Uncovering transport, deposition and impact of radionuclides released after the early spring 2020 wildfires in the Chernobyl Exclusion Zone

Scientific Reports - Tập 10 Số 1
Nikolaos Evangeliou1, Sabine Eckhardt1
1Department of Atmospheric and Climate Research (ATMOS), Norwegian Institute for Air Research (NILU), Instituttveien 18, PO Box 100, 2027, Kjeller, Norway

Tóm tắt

AbstractIn the beginning of April 2020, large fires that started in the Chernobyl Exclusion Zone (CEZ) established after the Chernobyl accident in 1986 caused media and public concerns about the health impact from the resuspended radioactivity. In this paper, the emissions of previously deposited radionuclides from these fires are assessed and their dispersion and impact on the population is examined relying on the most recent data on radioactive contamination and emission factors combined with satellite observations. About 341 GBq of 137Cs, 51 GBq of 90Sr, 2 GBq of 238Pu, 33 MBq of 239Pu, 66 MBq of 240Pu and 504 MBq of 241Am were released in 1st–22nd April 2020 or about 1,000,000,000 times lower than the original accident in 1986 and mostly distributed in Central and East Europe. The large size of biomass burning particles carrying radionuclides prevents long-range transport as confirmed by concentrations reported in Europe. The highest cumulative effective doses (> 15 μSv) were calculated for firefighters and the population living in the CEZ, while doses were much lower in Kiev (2–5 μSv) and negligible in Belarus, Russia and Europe. All doses are radiologically insignificant and no health impact on the European population is expected from the April 2020 fires.

Từ khóa


Tài liệu tham khảo

SAUEZM. State Agency of Ukraine on Exclusion Zone Management. (2020) (Accessed 27 April 2020); https://dazv.gov.ua/novini-ta-media/vsi-novyny.html

SSTC NRS. State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS) (2020) (Accessed 27 April 2020); https://www.sstc.ua

CRIIRAD. Stations de Surveillance de la Radioactivite Atmospherique et Aquatique Gerees par la CRIIRAD (2020) (Accessed 27 April 2020). https://balises.criirad.org/actuTchernobyl2020.html

SESU. The State Emergency Service of Ukraine (2020) (Accessed 27 April 2020). https://www.dsns.gov.ua/en/

NASA MODIS. EOSDIS Worldview (2020) (Accessed 20 April 2020). https://worldview.earthdata.nasa.gov/?v=21.455233147287252,46.772336918896116,38.486227185636864,55.42975888839051&t=2020-04-20-T23%3A38%3A22Z&l=MODIS_Terra_Thermal_Anomalies_Night(hidden),MODIS_Terra_Thermal_Anomalies_Day,MODIS_Aqua_Thermal_Anomalies_Nig

Sandford, A. Village evacuated as forest fires in Chernobyl exclusion zone continue to burn. Euronews (2020) (Accessed 15 April 2020). https://www.euronews.com/2020/04/10/village-evacuated-as-forest-fires-in-chernobyl-exclusion-zone-continue-to-burn

Gorchinskaya, K. Fire Destroys A Third of Tourist Attractions In Chernobyl. Forbes (2020) (Accessed 15 April 2020). https://www.forbes.com/sites/katyagorchinskaya/2020/04/15/fire-destroys-a-third-of-tourist-attractions-in-chernobyl/#5802cf6d2467

Reevell, P. to Chernobyl are extinguished after rain falls. ABC News (2020) (Accessed 16 April 2020). https://abcnews.go.com/International/ukraine-wildfires-close-chernobyl-extinguished-rain-falls/story?id=70138987

Roth, A. ‘Bad news’: radiation 16 times above normal after forest fire near Chernobyl. The Guardian (2020) (Accessed 15 April 2020). https://www.theguardian.com/environment/2020/apr/06/bad-news-radiation-spikes-16-times-above-normal-after-forest-fire-near-chernobyl

Varenikova, M. Chernobyl Wildfires Reignite, Stirring Up Radiation. The New York Times (2020) (Accessed 12 April 2020). https://www.nytimes.com/2020/04/11/world/europe/chernobyl-wildfire.html

Chornokondratenko, M. & Marrow, A. Fire raging near Ukraine’s Chernobyl poses radiation risk, say activists. Reuters (2020) (Accessed 15 April 2020). https://uk.reuters.com/article/us-ukraine-chernobyl-fire-idUKKCN21V1QW

Yoschenko, V. I. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part II. Modeling the transport process. J. Environ. Radioact. 87, 260–278 (2006).

Garger, E. K., Kashpur, V., Paretzke, H. G. & Tschiersch, J. Measurement of resuspended aerosol in the Chernobyl area: Part II. Size distribution of radioactive particles. Radiat. Environ. Biophys. 36, 275–283 (1998).

Evangeliou, N. et al. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: an impact assessment. Sci. Rep. 6, 26062 (2016).

Yoschenko, V. I. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments. J. Environ. Radioact. 86, 143–163 (2006).

Ager, A. A. et al. The wildfire problem in areas contaminated by the Chernobyl disaster. Sci. Total Environ. 696, 133954 (2019).

Evangeliou, N. et al. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol. Monogr. 85, 49–72 (2015).

IRSN. Information note Fires in Ukraine in the exclusion zone around the Chernobyl power plant : point position 1–9 (2020) (Accessed 29 April 2020). https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Fires-in-Ukraine-in-the-Exclusion-Zone-around-chernobyl-NPP_15042020.pdf

Greek Atomic Energy Commission. Measurement results in Greece related to the forest fire in the area of Chernobyl, Ukraine (2020) (Accessed 29 April 2020). https://eeae.gr/en/news/announcements/measurement-results-in-greece-related-to-the-forest-fire-in-the-area-of-chernobyl,-ukraine

Zerbo, L. Twitter. (2020) (Accessed 29 April 2020). https://twitter.com/SinaZerbo/status/1250149680450854915/photo/1

IRSN. Fires in Ukraine in the exclusion zone around the Chernobyl power plant : First results of 137 Cs measurements in France 1–4 (2020) (Accessed 2 May 2020). https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Fires-in-Ukraine-in-the-Exclusion-Zone-around-chernobyl-NPP_24042020.pdf

De Cort, M. et al. Atlas of caesium deposition on Europe after the Chernobyl accident (EU - Office for Official Publications of the European Communities, Brussels, 1998).

Kritidis, P. et al. Radioactive pollution in Athens, Greece due to the Fukushima nuclear accident. J. Environ. Radioact. 114, 100–104 (2012).

Salminen-Paatero, S., Thölix, L., Kivi, R. & Paatero, J. Nuclear contamination sources in surface air of Finnish Lapland in 1965–2011 studied by means of 137Cs, 90Sr, and total beta activity. Environ. Sci. Pollut. Res. 26, 21511–21523 (2019).

Vajda, N. & Kim, C. K. Determination of radiostrontium isotopes: A review of analytical methodology. Appl. Radiat. Isot. 68, 2306–2326 (2010).

Correa, R. et al. Activity concentration of NORM and 137Cs radionuclide in soil samples from the Andes Cordillera at latitude 33°56′ South. J. Phys. Conf. Ser. 1043, 012028 (2018).

Zimmer, R. & Thurow, E. Free Release of Ground Areas at the Greifswald Site. OECD/NEA Workshop on Radiological Characterisation for Decommissioning (2012) (Accessed 29 April 2020). https://www.oecd-nea.org/rwm/wpdd/rcd-workshop/A-4___OH_Radiological_characterisation_Greifswald.pdf.pdf

Garger, E. K. Air concentrations of radionuclides in the vicinity of Chernobyl and the effects of resuspension. J. Aerosol Sci. 25, 745–753 (1994).

BIOMOVS2. Atmospheric Resuspension of Radionuclides. Model Testing Using Chernobyl Data (1996) (Accessed 30 April 2020). https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/047/31047292.pdf

Hao, W. M. et al. Cesium emissions from laboratory fires. J. Air Waste Manag. Assoc. 68, 1211–1223 (2018).

Hosseini, S. et al. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 10, 8065–8076 (2010).

Kashparov, V. A. et al. Forest fires in the territory contaminated as a result of the Chernobyl accident: Radioactive aerosol resuspension and exposure of fire-fighters. J. Environ. Radioact. 51, 281–298 (2000).

WHO. Preliminary dose estimation from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami. WHO (2012) (Accessed 30 April 2020). https://apps.who.int/iris/bitstream/handle/10665/44877/9789241503662_eng.pdf;jsessionid=C841958E3309A981786A745C052B34C9?sequence=1

Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

Reid, J. S. et al. Global monitoring and forecasting of biomass-burning smoke: description of and lessons from the fire locating and modeling of burning emissions (FLAMBE) program. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2, 144–162 (2009).

Wiedinmyer, C. et al. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011).

French, N. H. F. et al. Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System. Earth Interact. 18, 1–26 (2014).

Sethy, N. K. et al. Assessment of naturally occurring radioactive materials in the surface soil of uranium mining area of Jharkhand, India. J. Geochem. Explor. 142, 29–35 (2014).

Njinga, R. L., Jonah, S. A. & Gomina, M. Preliminary investigation of naturally occurring radionuclides in some traditional medicinal plants used in Nigeria. J. Radiat. Res. Appl. Sci. 8, 208–215 (2015).

Tettey-Larbi, L., Darko, E. O., Schandorf, C. & Appiah, A. A. Natural radioactivity levels of some medicinal plants commonly used in Ghana. Springerplus 2, 1–9 (2013).

Wakeford, R. Chernobyl and fukushima—where are we now?. J. Radiol. Prot. 36, E1–E5 (2016).

Ichoku, C. & Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 14, 6643–6667 (2014).

Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980).

Zhang, F. et al. Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region. Environ. Res. Lett. 9, 075002 (2014).

Kasischke, E. S. et al. Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks. J. Geophys. Res. Biogeosci. 116, 1–17 (2011).

Zhang, X. & Kondragunta, S. Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product. Remote Sens. Environ. 112, 2886–2897 (2008).

Stohl, A. et al. Arctic smoke—record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 7, 511–534 (2007).

Wotawa, G. et al. Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys. Res. Lett. 33, 4–7 (2006).

Kashparov, V. A. et al. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci. Total Environ. 317, 105–119 (2003).

Kashparov, V. et al. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. 339–353 (2018).

Kashparov, V. A. et al. Soil contamination with 90Sr in the near zone of the Chernobyl accident. J. Environ. Radioact. 56, 285–298 (2001).

Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).

Strode, S. A., Ott, L. E., Pawson, S. & Bowyer, T. W. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010. J. Geophys. Res. Atmos. 117, 1–8 (2012).

Paugam, R., Wooster, M., Freitas, S. & Val Martin, M. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys. 16, 907–925 (2016).

Freitas, S. R., Longo, K. M. & Andreae, M. O. Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophys. Res. Lett. 33, 1–5 (2006).

Freitas, S. R., Longo, K. M., Trentmann, J. & Latham, D. Technical Note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag. Atmos. Chem. Phys. 10, 585–594 (2010).

Pisso, I. et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 12, 4955–4997 (2019).

Forster, C., Stohl, A. & Seibert, P. Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation. J. Appl. Meteorol. Climatol. 46, 403–422 (2007).

Grythe, H. et al. A new aerosol wet removal scheme for the Lagrangian particle model FLEXPARTv10. Geosci. Model Dev. 10, 1447–1466 (2017).

Kristiansen, N. I. et al. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys. 16, 3525–3561 (2016).

Masson, O. et al. Size distributions of airborne radionuclides from the fukushima nuclear accident at several places in europe. Environ. Sci. Technol. 47, 10995–11003 (2013).

Garger, E. K., Paretzke, H. G. & Tschiersch, J. Measurement of resuspended aerosol in the Chernobyl area Part III. Size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension. Radiat. Environ. Biophys. 37, 201–208 (1998).

Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

MEXT & NRA. Results of the Research on Distribution of Radioactive Substances Discharged by the Accident at TEPCO’s Fukushima Dai-ichi NPP. 50 (2012) (Accessed 29 April 2020). https://radioactivity.nsr.go.jp/en/contents/1000/294/24/PressR040802s.pdf

Evangeliou, N. et al. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.05.030 (2016).

Wooster, M. J., Roberts, G., Perry, G. L. W. & Kaufman, Y. J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 110, 1–24 (2005).

Amiro, B. D., Sheppard, S. C., Johnston, F. L., Evenden, W. G. & Harris, D. R. Burning radionuclide question: what happens to iodine, cesium and chlorine in biomass fires?. Sci. Total Environ. 187, 93–103 (1996).

Horrill, A. D., Kennedy, V. H., Paterson, I. S. & McGowan, G. M. The effect of heather burning on the transfer of radiocaesium to smoke and the solubility of radiocaesium associated with different types of heather ash. J. Environ. Radioact. 29, 1–10 (1995).

Piga, D. Processus engagés dans la rémanence, au niveau du compartiment atmosphérique, des radionucléides artificiels antérieurement déposés (2010).