Uncovering transport, deposition and impact of radionuclides released after the early spring 2020 wildfires in the Chernobyl Exclusion Zone
Tóm tắt
Từ khóa
Tài liệu tham khảo
SAUEZM. State Agency of Ukraine on Exclusion Zone Management. (2020) (Accessed 27 April 2020); https://dazv.gov.ua/novini-ta-media/vsi-novyny.html
SSTC NRS. State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS) (2020) (Accessed 27 April 2020); https://www.sstc.ua
CRIIRAD. Stations de Surveillance de la Radioactivite Atmospherique et Aquatique Gerees par la CRIIRAD (2020) (Accessed 27 April 2020). https://balises.criirad.org/actuTchernobyl2020.html
SESU. The State Emergency Service of Ukraine (2020) (Accessed 27 April 2020). https://www.dsns.gov.ua/en/
NASA MODIS. EOSDIS Worldview (2020) (Accessed 20 April 2020). https://worldview.earthdata.nasa.gov/?v=21.455233147287252,46.772336918896116,38.486227185636864,55.42975888839051&t=2020-04-20-T23%3A38%3A22Z&l=MODIS_Terra_Thermal_Anomalies_Night(hidden),MODIS_Terra_Thermal_Anomalies_Day,MODIS_Aqua_Thermal_Anomalies_Nig
Sandford, A. Village evacuated as forest fires in Chernobyl exclusion zone continue to burn. Euronews (2020) (Accessed 15 April 2020). https://www.euronews.com/2020/04/10/village-evacuated-as-forest-fires-in-chernobyl-exclusion-zone-continue-to-burn
Gorchinskaya, K. Fire Destroys A Third of Tourist Attractions In Chernobyl. Forbes (2020) (Accessed 15 April 2020). https://www.forbes.com/sites/katyagorchinskaya/2020/04/15/fire-destroys-a-third-of-tourist-attractions-in-chernobyl/#5802cf6d2467
Reevell, P. to Chernobyl are extinguished after rain falls. ABC News (2020) (Accessed 16 April 2020). https://abcnews.go.com/International/ukraine-wildfires-close-chernobyl-extinguished-rain-falls/story?id=70138987
Roth, A. ‘Bad news’: radiation 16 times above normal after forest fire near Chernobyl. The Guardian (2020) (Accessed 15 April 2020). https://www.theguardian.com/environment/2020/apr/06/bad-news-radiation-spikes-16-times-above-normal-after-forest-fire-near-chernobyl
Varenikova, M. Chernobyl Wildfires Reignite, Stirring Up Radiation. The New York Times (2020) (Accessed 12 April 2020). https://www.nytimes.com/2020/04/11/world/europe/chernobyl-wildfire.html
Chornokondratenko, M. & Marrow, A. Fire raging near Ukraine’s Chernobyl poses radiation risk, say activists. Reuters (2020) (Accessed 15 April 2020). https://uk.reuters.com/article/us-ukraine-chernobyl-fire-idUKKCN21V1QW
Yoschenko, V. I. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part II. Modeling the transport process. J. Environ. Radioact. 87, 260–278 (2006).
Garger, E. K., Kashpur, V., Paretzke, H. G. & Tschiersch, J. Measurement of resuspended aerosol in the Chernobyl area: Part II. Size distribution of radioactive particles. Radiat. Environ. Biophys. 36, 275–283 (1998).
Evangeliou, N. et al. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: an impact assessment. Sci. Rep. 6, 26062 (2016).
Yoschenko, V. I. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments. J. Environ. Radioact. 86, 143–163 (2006).
Ager, A. A. et al. The wildfire problem in areas contaminated by the Chernobyl disaster. Sci. Total Environ. 696, 133954 (2019).
Evangeliou, N. et al. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol. Monogr. 85, 49–72 (2015).
IRSN. Information note Fires in Ukraine in the exclusion zone around the Chernobyl power plant : point position 1–9 (2020) (Accessed 29 April 2020). https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Fires-in-Ukraine-in-the-Exclusion-Zone-around-chernobyl-NPP_15042020.pdf
Greek Atomic Energy Commission. Measurement results in Greece related to the forest fire in the area of Chernobyl, Ukraine (2020) (Accessed 29 April 2020). https://eeae.gr/en/news/announcements/measurement-results-in-greece-related-to-the-forest-fire-in-the-area-of-chernobyl,-ukraine
Zerbo, L. Twitter. (2020) (Accessed 29 April 2020). https://twitter.com/SinaZerbo/status/1250149680450854915/photo/1
IRSN. Fires in Ukraine in the exclusion zone around the Chernobyl power plant : First results of 137 Cs measurements in France 1–4 (2020) (Accessed 2 May 2020). https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Fires-in-Ukraine-in-the-Exclusion-Zone-around-chernobyl-NPP_24042020.pdf
De Cort, M. et al. Atlas of caesium deposition on Europe after the Chernobyl accident (EU - Office for Official Publications of the European Communities, Brussels, 1998).
Kritidis, P. et al. Radioactive pollution in Athens, Greece due to the Fukushima nuclear accident. J. Environ. Radioact. 114, 100–104 (2012).
Salminen-Paatero, S., Thölix, L., Kivi, R. & Paatero, J. Nuclear contamination sources in surface air of Finnish Lapland in 1965–2011 studied by means of 137Cs, 90Sr, and total beta activity. Environ. Sci. Pollut. Res. 26, 21511–21523 (2019).
Vajda, N. & Kim, C. K. Determination of radiostrontium isotopes: A review of analytical methodology. Appl. Radiat. Isot. 68, 2306–2326 (2010).
Correa, R. et al. Activity concentration of NORM and 137Cs radionuclide in soil samples from the Andes Cordillera at latitude 33°56′ South. J. Phys. Conf. Ser. 1043, 012028 (2018).
Zimmer, R. & Thurow, E. Free Release of Ground Areas at the Greifswald Site. OECD/NEA Workshop on Radiological Characterisation for Decommissioning (2012) (Accessed 29 April 2020). https://www.oecd-nea.org/rwm/wpdd/rcd-workshop/A-4___OH_Radiological_characterisation_Greifswald.pdf.pdf
Garger, E. K. Air concentrations of radionuclides in the vicinity of Chernobyl and the effects of resuspension. J. Aerosol Sci. 25, 745–753 (1994).
BIOMOVS2. Atmospheric Resuspension of Radionuclides. Model Testing Using Chernobyl Data (1996) (Accessed 30 April 2020). https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/047/31047292.pdf
Hao, W. M. et al. Cesium emissions from laboratory fires. J. Air Waste Manag. Assoc. 68, 1211–1223 (2018).
Hosseini, S. et al. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 10, 8065–8076 (2010).
Kashparov, V. A. et al. Forest fires in the territory contaminated as a result of the Chernobyl accident: Radioactive aerosol resuspension and exposure of fire-fighters. J. Environ. Radioact. 51, 281–298 (2000).
WHO. Preliminary dose estimation from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami. WHO (2012) (Accessed 30 April 2020). https://apps.who.int/iris/bitstream/handle/10665/44877/9789241503662_eng.pdf;jsessionid=C841958E3309A981786A745C052B34C9?sequence=1
Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
Reid, J. S. et al. Global monitoring and forecasting of biomass-burning smoke: description of and lessons from the fire locating and modeling of burning emissions (FLAMBE) program. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2, 144–162 (2009).
Wiedinmyer, C. et al. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011).
French, N. H. F. et al. Modeling regional-scale wildland fire emissions with the Wildland Fire Emissions Information System. Earth Interact. 18, 1–26 (2014).
Sethy, N. K. et al. Assessment of naturally occurring radioactive materials in the surface soil of uranium mining area of Jharkhand, India. J. Geochem. Explor. 142, 29–35 (2014).
Njinga, R. L., Jonah, S. A. & Gomina, M. Preliminary investigation of naturally occurring radionuclides in some traditional medicinal plants used in Nigeria. J. Radiat. Res. Appl. Sci. 8, 208–215 (2015).
Tettey-Larbi, L., Darko, E. O., Schandorf, C. & Appiah, A. A. Natural radioactivity levels of some medicinal plants commonly used in Ghana. Springerplus 2, 1–9 (2013).
Ichoku, C. & Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 14, 6643–6667 (2014).
Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980).
Zhang, F. et al. Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region. Environ. Res. Lett. 9, 075002 (2014).
Kasischke, E. S. et al. Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks. J. Geophys. Res. Biogeosci. 116, 1–17 (2011).
Zhang, X. & Kondragunta, S. Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product. Remote Sens. Environ. 112, 2886–2897 (2008).
Stohl, A. et al. Arctic smoke—record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 7, 511–534 (2007).
Wotawa, G. et al. Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys. Res. Lett. 33, 4–7 (2006).
Kashparov, V. A. et al. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci. Total Environ. 317, 105–119 (2003).
Kashparov, V. et al. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. 339–353 (2018).
Kashparov, V. A. et al. Soil contamination with 90Sr in the near zone of the Chernobyl accident. J. Environ. Radioact. 56, 285–298 (2001).
Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).
Strode, S. A., Ott, L. E., Pawson, S. & Bowyer, T. W. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010. J. Geophys. Res. Atmos. 117, 1–8 (2012).
Paugam, R., Wooster, M., Freitas, S. & Val Martin, M. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys. 16, 907–925 (2016).
Freitas, S. R., Longo, K. M. & Andreae, M. O. Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophys. Res. Lett. 33, 1–5 (2006).
Freitas, S. R., Longo, K. M., Trentmann, J. & Latham, D. Technical Note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag. Atmos. Chem. Phys. 10, 585–594 (2010).
Pisso, I. et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 12, 4955–4997 (2019).
Forster, C., Stohl, A. & Seibert, P. Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation. J. Appl. Meteorol. Climatol. 46, 403–422 (2007).
Grythe, H. et al. A new aerosol wet removal scheme for the Lagrangian particle model FLEXPARTv10. Geosci. Model Dev. 10, 1447–1466 (2017).
Kristiansen, N. I. et al. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys. 16, 3525–3561 (2016).
Masson, O. et al. Size distributions of airborne radionuclides from the fukushima nuclear accident at several places in europe. Environ. Sci. Technol. 47, 10995–11003 (2013).
Garger, E. K., Paretzke, H. G. & Tschiersch, J. Measurement of resuspended aerosol in the Chernobyl area Part III. Size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension. Radiat. Environ. Biophys. 37, 201–208 (1998).
MEXT & NRA. Results of the Research on Distribution of Radioactive Substances Discharged by the Accident at TEPCO’s Fukushima Dai-ichi NPP. 50 (2012) (Accessed 29 April 2020). https://radioactivity.nsr.go.jp/en/contents/1000/294/24/PressR040802s.pdf
Evangeliou, N. et al. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.05.030 (2016).
Wooster, M. J., Roberts, G., Perry, G. L. W. & Kaufman, Y. J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 110, 1–24 (2005).
Amiro, B. D., Sheppard, S. C., Johnston, F. L., Evenden, W. G. & Harris, D. R. Burning radionuclide question: what happens to iodine, cesium and chlorine in biomass fires?. Sci. Total Environ. 187, 93–103 (1996).
Horrill, A. D., Kennedy, V. H., Paterson, I. S. & McGowan, G. M. The effect of heather burning on the transfer of radiocaesium to smoke and the solubility of radiocaesium associated with different types of heather ash. J. Environ. Radioact. 29, 1–10 (1995).
Piga, D. Processus engagés dans la rémanence, au niveau du compartiment atmosphérique, des radionucléides artificiels antérieurement déposés (2010).