Khám Phá Chương Trình Biểu Thị Nectary Của Arabidopsis thaliana: Điều Tra Sự Biểu Hiện Gene Khác Nhau Trong Tissues Có Hoa Tiết Nectar

Springer Science and Business Media LLC - Tập 9 - Trang 1-16 - 2009
Brian W Kram1, Wayne W Xu2, Clay J Carter1
1Department of Biology, University of Minnesota/Duluth, Duluth, USA
2Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, USA

Tóm tắt

Nhiều loài thực vật có hoa thu hút thụ phấn bằng cách cung cấp phần thưởng là mật hoa. Đáng chú ý, các sự kiện phân tử liên quan đến sự phát triển của các cơ quan tiết nectar, cũng như quá trình tổng hợp và bài tiết nectar, vẫn còn chưa được hiểu rõ. Thực tế, cho đến nay, chưa có gen nào được chứng minh là có ảnh hưởng trực tiếp đến việc sản xuất de novo hoặc chất lượng của nectar hoa. Để giải quyết khoảng trống về kiến thức này, mảng ATH1 Affymetrix® GeneChip đã được sử dụng để điều tra hệ thống chương trình biểu thị của nectary Arabidopsis nhằm xác định các gen và con đường có thể liên quan đến việc sản xuất nectar. Trong nghiên cứu này, chúng tôi đã xác định một số lượng lớn các gen được biểu hiện khác nhau giữa các loại nectary bên tiết và các mô nectary giữa không tiết, cũng như giữa các nectary bên trưởng thành (sau phát hoa) và các nectary bên chưa trưởng thành (trước phát hoa). Biểu hiện trong các nectary cũng được so sánh với mười ba mô tham chiếu không phải nectary, từ đó 270 gen được xác định là có biểu hiện tăng cường đáng kể trong các nectary. Các mô hình biểu hiện của 14 gen giàu nectary cũng được xác nhận thông qua RT PCR. Khi xem xét các nhóm chức năng của các gen được tăng cường, các con đường liên quan đến việc điều chỉnh gen, chuyển hóa carbohydrate và chuyển hóa lipid đặc biệt phong phú trong các nectary so với các mô tham chiếu. Một số lượng lớn các gen được biểu hiện ưu tiên trong các nectary, cũng như giữa các loại nectary và các giai đoạn phát triển, đã được xác định. Một số giả thuyết liên quan đến các cơ chế sản xuất nectar và quy định việc này được đề xuất, và cung cấp một điểm khởi đầu cho các phương pháp di truyền đảo ngược nhằm xác định các cơ chế phân tử cơ bản của quá trình tổng hợp và bài tiết nectar.

Từ khóa

#nectar #Arabidopsis thaliana #gene expression #nectar production #transcriptome

Tài liệu tham khảo

Simpson BB, Neff JL: Evolution and diversity of floral rewards. Handbook of experimental pollination biology. Edited by: Jones CE, Little RJ. 1983, New York: Van Nostrand Reinhold, 142-159. Baker H, Baker I: A brief historical review of chemistry of floral nectar. The Biology of Nectaries. Edited by: Bentley BL. 1983, New York: Columbia University Press, 126-152. Baker H, Baker I: Amino acids in nectar and their evolutionary significance. Nature. 1973, 241: 543-545. Baker H, Baker I: Studies of nectar-constitution and pollinator-plant coevolution. Coevolution of animals and plants. Edited by: Gilbert LE, Raven PH. 1975, Austin, TX: University of Texas Press, 100-140. Ecroyd CE, Franich RA, Kroese HW, Steward D: Volatile constituents of Cactylanthus taylorii flower nectar in relation to flower pollination and browsing by animals. Phytochemistry. 1995, 40: 1387-1389. Deinzer ML, Thomson PA, Burgett DM, Isaacson DL: Pyrrolizidine alkaloids: their occurrence in honey from tansy ragwort (Senecio jacobaea L.). Science. 1977, 195: 497-499. Ferreres F, Andrade P, Gil MI, Tomas Barberan FA: Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Z Lebensm Unters Forsch. 1996, 202: 40-44. Roshchina VV, Roshchina VD: The Excretory Function of Higher Plants. 1993, New York: Springer-Verlag. Griebel C, Hess G: The vitamin C content of flower nectar of certain Labiatae. Z Unters Lebensm. 1990, 79: 168-171. Heinrich G: Analysis of cations in nectars by means of a laser microprobe mass analyser (LAMMA). Beitr Biol Pflanz. 1989, 64: 293-308. Vogel S: Flowers offering fatty oil instead of nectar. Abstracts XIth International Botany Congress. 1969, Seattle, WA. Kram BW, Bainbridge EA, Perera MADN, Carter C: Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia . Plant Mol Biol. 2008, 68: 173-183. Carter C, Thornburg RW: Is the nectar redox cycle a floral defense against microbial attack?. Trends Plant Sci. 2004, 9: 320-324. Davis AR, Pylatuik JD, Paradis JC, Low NH: Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta. 1998, 205: 305-318. Evert RF, Eichorn SE: Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. 2006, Wilmington, DE: Wiley-Liss, 3 Nepi M: Nectary structure and ultrastructure. Nectaries and nectar. Edited by: Nicolson SW, Nepi M, Pacini E. 2007, Dordrecht: Springer Netherlands, 129-166. Zhu J, Hu Z, Muuml IM: Ultrastructural investigations on floral nectary of Arabidopsis thaliana prepared by high pressure freezing and freeze substitution. Biol Cell. 1995, 84: 225 Zhu J, Hu ZH: Cytological studies on the development of sieve element and floral nectary tissue in Arabidopsis thaliana . Acta Bot Sin. 2002, 44: 9-14. Zhu J, Hu ZH, Müller M: Ultrastructure of the floral nectary of Arabidopsis thaliana L. prepared from high pressure freezing and freeze substitution. Acta Bot Sin. 1997, 39: 289-295. Ren G, Healy RA, Klyne AM, Horner HT, James MG, Thornburg RW: Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Sci. 2007, 173: 277-290. Fahn A: Secretory Tissues in Plants. 1979, London: Academic Press. Fahn A: Ultrastructure of nectaries in relation to nectar secretion. Am J Bot. 1979, 66: 977-985. Pacini E, Nepi M: Nectar production and presentation. Nectaries and nectar. Edited by: Nicolson SW, Nepi M, Pacini E. 2007, Dordrecht: Springer. Fahn A: Tansley Review No. 14 Secretory Tissues in Vascular Plants. New Phytologist. 1988, 108: 229-257. Durkee L: The ultrastructure of floral and extrafloral nectaries. The Biology of Nectaries. Edited by: Bentley B, Elias T. 1983, New York: Columbia University Press, 1-29. Bowman JL, Smyth DR: CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development. 1999, 126: 2387-2396. Baum SF, Eshed Y, Bowman JL: The Arabidopsis nectary is an ABC-independent floral structure. Development. 2001, 128: 4657-4667. Lee JY, Baum SF, Alvarez J, Patel A, Chitwood DH, Bowman JL: Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis. Plant Cell. 2005, 17: 25-36. McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW: The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development. 2008, 135: 1537-1546. Lee JY, Baum SF, Oh SH, Jiang CZ, Chen JC, Bowman JL: Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development. 2005, 132: 5021-5032. Carter C, Graham RA, Thornburg RW: Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol. 1999, 41: 207-216. Carter C, Thornburg RW: The nectary-specific pattern of expression of the tobacco Nectarin I promoter is regulated by multiple promoter elements. Plant Mol Biol. 2003, 51: 451-457. Carter CJ, Thornburg RW: Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol. 2004, 134: 460-469. Carter CJ, Thornburg RW: Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol. 2004, 54: 415-425. Ge YX, Angenent GC, Wittich PE, Peters J, Franken J, Busscher M, Zhang LM, Dahlhaus E, Kater MM, Wullems GJ, Creemers-Molenaar T: NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida . Plant J. 2000, 24: 725-734. Jackson D, Culianez-Macia F, Prescott AG, Roberts K, Martin C: Expression patterns of myb genes from Antirrhinum flowers. Plant Cell. 1991, 3: 115-125. Song JT, Seo HS, Song SI, Lee JS, Choi YD: NTR1 encodes a floral nectary-specific gene in Brassica campestris L. ssp. pekinensis. Plant Mol Biol. 2000, 42: 647-655. Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E: Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 2005, 42: 757-771. Savidge B, Rounsley SD, Yanofsky MF: Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell. 1995, 7: 721-733. Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, et al: The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. 2008, 55: 526-542. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005, 37: 501-506. Hoffmann MH, Bremer M, Schneider K, Burger F, Stolle E, Moritz G: Flower visitors in a natural population of Arabidopsis thaliana . Plant Biol. 2003, 5: 491-494. Davis AR, Fowke LC, Sawhney VK, Low NH: Floral nectar secretion and ploidy in Brassica rapa and B. napus (Brassicaceae) II. Quantified variability of nectary structure and function in rapid-cycling lines. Ann Bot. 1996, 77: 223-234. Nieuwhof M: Pollination and contamination of Brassica oleracea L. Euphytica. 1963, 12: 17-26. Pearson OH: Study of the life history of Brassica oleracea . Bot Gaz. 1933, 94: 534-550. Rahman KA: Insect pollinators of toria (Brassica napus Linn., var. dichotoma prain) and sarson (B. campestris Linn., var. sarson prain) at Lyallpur. Indian J Agr Sci. 1940, 10: 422-447. Vesely V: The economic effectiveness of bee polination on winter rape (Brassica napus L., var. oleifera metz.). Min Zemedel Lesn a Vodniho Hospodar Ust Vedtach Inform Zemedel Ekon. 1962, 8: 659-673. Búrquez A, Corbet SA: Do flowers reabsorb nectar?. Funct Ecol. 1991, 5: 369-379. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139: 5-17. Ma SS, Gong QQ, Bohnert HJ: Dissecting salt stress pathways. J Exp Bot. 2006, 57: 1097-1107. Fallahi H, Scofield GN, Badger MR, Chow WS, Furbank RT, Ruan YL: Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. J Exp Bot. 2008, 59: 3283-3295. Thoma S, Hecht U, Kippers A, Botella J, Devries S, Somerville C: Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 1994, 105: 35-45. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: Genevestigator. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiol. 2004, 136: 2621-2632. Bowman JL: Arabidopsis: An Atlas of Morphology and Development. 1994, New York: Springer-Verlag New York, Inc. Roitsch T: Source-sink regulation by sugar and stress. Curr Opin Plant Biol. 1999, 2: 198-206. Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM: Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot. 2003, 54: 525-531. TAIR AraCyc Database. [http://www.arabidopsis.org/biocyc/index.jsp]. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL: Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development. 1999, 126: 4117-4128. Alvarez J, Smyth DR: CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development. 1999, 126: 2377-2386. Evrard A, Ndatimana T, Eulgem T: FORCA, a promoter element that responds to crosstalk between defense and light signaling. BMC Plant Biol. 2009, 9: 2 Heck GR, Perry SE, Nichols KW, Fernandez DE: AGL15, a MADS domain protein expressed in developing embryos. Plant Cell. 1995, 7: 1271-1282. Perry SE, Lehti MD, Fernandez DE: The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol. 1999, 120: 121-129. Jin HL, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C: Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000, 19: 6150-6161. Kliebenstein DJ, Lim JE, Landry LG, Last RL: Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human Regulator of Chromatin Condensation 1. Plant Physiol. 2002, 130: 234-243. Aloni R, Aloni E, Langhans M, Ullrich CI: Role of auxin in regulating Arabidopsis flower development. Planta. 2006, 223: 315-328. Mishra R, Sharma S: Growth regulators affect nectar-pollen production and insect foraging in Brassica seed crops. Curr Sci India. 1988, 57: 1297-1299. Smyth DR, Bowman JL, Meyerowitz EM: Early flower development in Arabidopsis. Plant Cell. 1990, 2: 755-767. Denaturing Agarose Gel Electrophoresis of RNA. [http://www.ambion.com/techlib/append/supp/rna_gel.html]. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003, 31: e15 Shih JH, Michalowska AM, Dobbin K, Ye YM, Qiu TH, Green JE: Effects of pooling mRNA in microarray class comparisons. Bioinformatics. 2004, 20: 3318-3325. Zhang SD, Gant TW: Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics. 2005, 21: 4378-4383. Storey JD, Tibshirani R: Statistical significance for genomewide studies. P Natl Acad Sci USA. 2003, 100: 9440-9445. The Arabidopsis Information Resource (TAIR). [http://www.arabidopsis.org]. OMICS Viewer of the Plant Metabolic Network. [http://www.plantcyc.org/tools/tools_overview.faces]. Java TreeView. [http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm]. Arabidopsis thaliana expression network analysis (Athena). [http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl]. O'connor TR, Dyreson C, Wyrick JJ: Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics. 2005, 21: 4411-4413.