Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations

Springer Science and Business Media LLC - Tập 44 Số 1 - Trang 38-68 - 2010
Steven M. Wise1
1Mathematics Department, The University of Tennessee, Knoxville, USA 37996-0614#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007)

Bramble, J.: A second order finite difference analog of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966)

Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. AI, 27–34 (1949)

Cahn, J.: On spinodal decomposition. Acta Metall. 9, 795 (1961)

Cahn, J., Hilliard, J.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28, 258 (1958)

Elliot, C., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)

Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

Feng, X., Wise, S.: Analysis of a Fully Discrete Finite Element Approximation of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow (in preparation)

Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87, 675–699 (2001)

Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)

Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier Stokes fluids in 2d. SIAM J. Sci. Comput. 29, 2241–2257 (2007)

Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003)

Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492–513 (2002)

Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14, 514–545 (2002)

Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

Lowengrub, J., Truskinovsky, L.: Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

Shinozaki, A., Oono, Y.: Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A 45, R2161–R2164 (1992)

Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2005)

Vollmayr-Lee, B., Rutenberg, A.: Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68, 066,703 (2003)

Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Cont. Dyn. Sys. A 28, 405–423 (2010)

Wang, C., Wise, S.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. (in review)

Wise, S., Lowengrub, J., Cristini, V.: An adaptive algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. (in review)

Wise, S., Lowengrub, J., Frieboes, H., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth–I model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

Zheng, X., Wise, S., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005)