Uncertainty-Wise Cyber-Physical System test modeling

Software & Systems Modeling - Tập 18 Số 2 - Trang 1379-1418 - 2019
Man Zhang1, Shaukat Ali1, Tao Yue1, Roland Norgren2, Oscar Okariz3
1Simula Research Laboratory, Oslo, Norway
2Future Position X, Gävle, Sweden
3ULMA Handling Systems, Oñati, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369 (2008)

Rawat, D.B., Rodrigues, J.J., Stojmenovic, I.: Cyber-Physical Systems: From Theory to Practice. CRC Press, Boca Raton (2015)

Sunder, S.: Foundations for innovation in Cyber-Physical Systems. In: Proceedings of the NIST CPS Workshop, Chicago, IL, USA

Geisberger, E., Broy, M.: Living in a Networked World: Integrated Research Agenda Cyber-Physical Systems (agendaCPS). Herbert Utz Verlag, Munich (2015)

Bammer, G., Smithson, M.: Uncertainty and Risk: Multidisciplinary Perspectives. Routledge, Abingdon (2012)

Lindley, D.V.: Understanding Uncertainty (Revised Edition). Wiley, Hoboken (2014)

Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in Cyber-Physical Systems: a conceptual model. In: Proceedings of the 12th European Conference on Modelling Foundations and Applications (ECMFA), pp. 247–264

Ali, S., Yue, T.: U-test: evolving, modelling and testing realistic uncertain behaviours of Cyber-Physical Systems. In: Proceedings of the IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), pp. 1–2

Future Position X. http://www.fpx.se/ . Accessed 2017

ULMA Handling System. http://www.ulmahandling.com/en/ . Accessed 2017

Object Management Group (OMG): UML profile for MARTE: modeling and analysis of real-time embedded systems, Version 1.1. http://www.omg.org/spec/MARTE/ (2011)

IBM Rational Software Architect Modeling Tool. https://www.ibm.com/developerworks/downloads/r/architect/ . Accessed 2016

CertifyIt. http://www.smartesting.com/en/certifyit/ . Accessed 2017

Easy Global Market. http://www.eglobalmark.com/ . Accessed 2017

Nordic Med Test. http://www.nordicmedtest.se/ . Accessed 2017

IK4-IKERLAN. http://www.ikerlan.es/eu/ . Accessed 2017

Cisco. http://www.cisco.com/ . Accessed 2017

Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior using aspect-oriented modeling to support robustness testing of industrial systems. Softw. Syst. Model. 11(4), 633–670 (2012)

Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn. Palgrave Macmillan, Basingstoke (2010)

Object Management Group (OMG): UML testing profile, Version 1.2. http://www.omg.org/spec/UTP/ (2013)

Ali, S., Yue, T., Hoffmann, A., Wendland, M.F., Bagnato, A., Brosse, E., Schacher, M., Dai, Z.R.: How does the UML testing profile support risk-based testing. In: 2014 IEEE International Symposium on Software Reliability Engineering Workshops, pp. 311–316

UML Testing Profile $$^{{\rm TM}}$$ TM (UTP) 2.0. http://utp.zen-tools.com/

Object Management Group (OMG): UML testing profile, Version 2. http://utp.omg.org/ , http://www.omg.org/cgi-bin/doc?ad/16-05-10 (2016)

IBM: UML Action Language (UAL). https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html (2017). Accessed 2017

Zhang, M., Ali, S., Yue, T., Nguyen, P.H.: Uncertainty Modeling Framework for the Integration Level V.1. Technical Report 2016-01 Simula Research Laboratory, 2016. https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1 (2016)

Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 7(3), 535–563 (1928)

Lamata, M.T., Moral, S.: Measures of entropy in the theory of evidence. Int. J. Gen. Syst. 14(4), 297–305 (1988)

Yager, R.R.: Entropy and specificity in a mathematical theory of evidence. Int. J. Gen. Syst. 9(4), 249–260 (1983)

Higashi, M., Klir, G.J.: Measures of uncertainty and information based on possibility distributions. Int. J. Gen. Syst. 9(1), 43–58 (1982)

Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

George, J.K., Bo, Y.: Fuzzy sets and fuzzy logic, theory and applications (2008)

Kosko, B.: Fuzzy entropy and conditioning. Inf. Sci. 40(2), 165–174 (1986)

Didier, D., Henri, P.: Fuzzy Sets and Systems: Theory and Application. Mathematics in Science and Engineering, vol. 144. Academic Press, Cambridge (1980)

Zimmermann, H.-J.: Fuzzy Set Theory—And Its Applications. Springer, Berlin (2011)

Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)

Atanassov, K., Georgiev, C.: Intuitionistic fuzzy prolog. Fuzzy Sets Syst. 53(2), 121–128 (1993)

Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

Grattan-Guinness, I.: Fuzzy membership mapped onto intervals and many-valued quantities. Math. Logic Q. 22(1), 149–160 (1976)

Jahn, K.U.: Intervall-wertige Mengen. Math. Nachr. 68(1), 115–132 (1975)

Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. Syst. Man Cybern. 23(2), 610–614 (1993)

De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20(4), 301–312 (1972)

Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, Hoboken (2008)

Song, H., Rawat, D.B., Jeschke, S., Brecher, C.: Cyber-Physical Systems: Foundations, Principles and Applications. Morgan Kaufmann, Burlington (2016)

Talcott, C.: Cyber-Physical Systems and events. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms: Challenges and Visions, pp. 101–115. Springer, Berlin (2008)

Ali, S., Briand, L.C., Rehman, M.J.-U., Asghar, H., Iqbal, M.Z.Z., Nadeem, A.: A state-based approach to integration testing based on UML models. Inf. Softw. Technol. 49(11–12), 1087–1106 (2007)

Eclipse OCL. http://www.eclipse.org/modeling/mdt/?project=ocl-ocl . Accessed 2016

Dresden OCL. https://marketplace.eclipse.org/content/dresden-ocl . Accessed April, 2016

IBM RSA Simulation Toolkit. http://www-03.ibm.com/software/products/en/ratisoftarchsimutool . Accessed 2016

Use Cases—Industrial Case Studies. http://www.u-test.eu/use-cases/ . Accessed 2017

Certus. http://certus-sfi.no/ . Accessed 2017

Schneider, M., Wendland, M.-F.: Gaining certainty about uncertainty: testing for uncertainties of Cyber-Physical Systems at the application level. In: 4th International Workshop on Risk Assessment and Risk-driven Quality Assurance (RISK), In Conjunction with 28th International Conference on Testing Software and Systems (ICTSS) (2016)

Kerwin, A.: None too solid medical ignorance. Sci. Commun. 15(2), 166–185 (1993)

Object Management Group (OMG):Concrete syntax For A UML action language: action language for foundational UML (ALF), Version 1.0.1. http://www.omg.org/spec/ALF/ (2013)

Sicilia, M.-A., Mastorakis, N.: Extending UML 1. 5 for fuzzy conceptual modeling: an strictly additive approach. WSEAS Trans. Syst. 3(5), 2234–2239 (2004)

Ma, Z.: Fuzzy information modeling with the UML. Advances in fuzzy object oriented databases: modeling and applications. Idea Group Inc., USA, 153–75 (2004)

Ma, Z.M., Zhang, F., Yan, L.: Fuzzy information modeling in UML class diagram and relational database models. Appl. Soft Comput. 11(6), 4236–4245 (2011)

Yan, L., Ma, Z.M. : Extending nested relational model for fuzzy information modeling. In: 2009 WASE International Conference on Information Engineering, pp. 587–590 (2009)

Ma, Z.M., Zhang, F., Yan, L., Cheng, J.: Representing and reasoning on fuzzy UML models: a description logic approach. Expert Syst. Appl. 38(3), 2536–2549 (2011)

Zhang, F., Ma, Z.M.: Construction of fuzzy ontologies from fuzzy UML models. Int. J. Comput. Intell. Syst. 6(3), 442–472 (2013)

Haroonabadi, A., Teshnehlab, M., Movaghar, A.: A novel method for behavior modeling in uncertain information systems. World Acad. Sci. Eng. Technol. 41, 959–966 (2008)

Motameni, H., Daneshfar, I., Bakhshi, J., Nematzadeh, H.: Transforming fuzzy state diagram to fuzzy Petri net. J. Adv. Comput. Res. 1(1), 29–44 (2010)

Grassi, V., Mirandola, R.: UML modelling and performance analysis of mobile software architectures. In: UML 2001—The Unified Modeling Language. Modeling Languages, Concepts, and Tools, pp. 209–224. Springer (2001)

Garousi, V.: Traffic-aware stress testing of distributed real-time systems based on UML models in the presence of time uncertainty. In: 2008 1st International Conference on Software Testing, Verification, and Validation, pp. 92–101

Object Management Group (OMG): UML profile for schedulability, performance, and time, Version 1.1. http://www.omg.org/spec/SPTP/ (2005)

Riebisch, M., Philippow, I., Götze, M.: UML-based statistical test case generation. In: Aksit, M., Mezini, M., Unland, R. (eds.) Objects, Components, Architectures, Services, and Applications for a Networked World. NODe 2002. Lecture Notes in Computer Science, vol. 2591, pp. 394–411. Springer, Berlin (2002)

Salay, R., Famelis, M., Chechik, M.: Language independent refinement using partial modeling. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. FASE 2012. Lecture Notes in Computer Science, vol. 7212, pp. 224–239. Springer, Berlin (2012)

Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with uncertainty. In: 2012 34th International Conference on Software Engineering (ICSE), pp. 573–583 (2012)

Famelis, M., Santosa, S.: MAV-Vis: a notation for model uncertainty. In: 2013 5th International Workshop on Modeling in Software Engineering (MiSE), pp. 7–12 (2013)

Garvey, P.R., Lansdowne, Z.F.: Risk matrix: an approach for identifying, assessing, and ranking program risks. Air Force J. Logist. 22(1), 18–21 (1998)

Klir, G.: Facets of Systems Science. Springer, Berlin (2013)