Ultraviolet and infrared spectroscopy of neutral and ionic non-covalent diastereomeric complexes in the gas phase

Rendiconti Lincei - Tập 24 - Trang 259-267 - 2013
Flaminia Rondino1, Alessandra Ciavardini2,3, Mauro Satta4, Alessandra Paladini5, Caterina Fraschetti3, Antonello Filippi3, Bruno Botta3, Andrea Calcaterra3, Maurizio Speranza3, Anna Giardini5, Susanna Piccirillo2
1C.R. ENEA Frascati, Rome, Italy
2Dip. di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Rome, Italy
3Dip.di Chimica e Tecnologie del Farmaco, Università di Roma “La Sapienza”, Rome, Italy
4CNR-ISMN, Rome, Italy
5CNR-IMIP, Tito Scalo, Italy

Tóm tắt

Non-covalent intermolecular interactions responsible for chiral discrimination have been investigated in the gas phase both in neutral and ionic complexes. Mass-selected resonant two-photon ionization (R2PI) as well as infrared depleted R2PI (IR–R2PI) techniques have been applied to investigate the role of fluorine substitution in the chiral recognition process between (R)-1-phenyl 1-ethanol (ER), (S)-1-(4-fluorophenyl)-ethanol (pFES), (R)-1-phenyl-2,2,2-trifluoroethanol (FER) and the two enantiomers of butan-2-ol (BR/S), generated in a supersonic molecular beam. The results have been interpreted with the aid of theoretical predictions at the D-B3LYP/6-31G** level of theory. The diastereomeric complexes of ER and pFES with R- and S-butan-2-ol are structurally similar, and dispersive interactions between the aliphatic chain of the alcohol and the π system of the chromophore as well repulsive interactions are mainly responsible for chiral recognition. FER forms, predominantly with S-butan-2-ol, also stable complexes in which the alcohol is oriented away from the aromatic ring. The ionic complexes between pure enantiomers of the bis (diamido)-bridged basket resorcin[4]arene and cytarabine are generated in the gas phase by electrospray ionization and investigated by IRMPD. The proton-bound diastereomers show clearly different IRMPD spectra which, in light of ONIOM (B3LYP/6-31(d):UFF) calculations, are consistent with the occurrence of several isomeric structures, in which the N(3)-protonated guest is either accommodated inside the host cavity or outside it. The spectral differences are attributed to the effects of the intramolecular hydrogen bonding between the C(2′)_OH group and the aglycone oxygen atom of the nucleosidic guest upon repulsive interactions between the same oxygen atom and the aromatic rings of the host.

Tài liệu tham khảo

Alkorta I, Picazo O, Elguero J (2006) Curr Org Chem 10:695–714

Brutschy BJ (1990) Phys Chem 94:8637–8647

Catone D, Giardini Guidoni A, Paladini A, Piccirillo S, Rondino F, Satta M, Scuderi D, Speranza M (2004) Angew Chem Int Ed 43(14):1868–1871

Dapprich S, Komromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct 474–515:1–21

Dearden V, Fang N (2010) In Chiral Recognition in the Gas Phase. In: Zehnacker A (ed) CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 133–142

Filippi A, Giardini A, Piccirillo S, Speranza M (2000) Int J Mass Spectrom 198:137–163

Filippi A, Fraschetti C, Piccirillo S, Rondino F, Botta B, D’Acquarica I, Calcaterra A, Speranza M (2012) Chem Eur J 18(27):8320–8328

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle S, Pople JA (2003) Gaussian 03, Gaussian, Inc., Pittsburgh, PA. High Performance Computational Chemistry Group, NWChem, A computational chemistry package for parallel computers, Version 5.0.1 (2001), Pacific Northwest National Laboratory, Richland, Washington 99352, USA

Giardini Guidoni A, Piccirillo S, Scuderi D, Satta M, Di Palma TM, Speranza M, Filippo A, Paladini A (2001) Chirality 13:727–730

Giardini A, Rondino F, Paladini A, Speranza M, Satta M, Piccirillo S (2009) J Phys Chem A 113(52):15127–15135

Grimme S (2004) J Comput Chem 25:1463

Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959–1967

King Adrian K, Howard Brian J (2009) J Mol Spectrosc 257:205–212

Latini A, Toja D, Giardini-Guidoni A, Piccirillo S, Speranza M (1999) Angew Chem 111:838; Angew Chem Int Ed 38:815

Latini A, Satta M, Giardini Guidoni A, Piccirillo S, Speranza M (2000) Chem A Eur J 6:1042–1049

Le Barbu K, Brenner V, Millie Ph, Lahmani F, Zehnacker-Rentien A (1998) J Phys Chem A 102:128–137

Le Barbu K, Zehnacker A, Lahamani F, Mons M, Piuzzi, Dimicoli I (2001) Chirality 13:715–721

Lipkowitz KB, Raghothama S, Yang J (1992) J Am Chem Soc 114:1554

Maitre P, Lemaire J, Scuderi D (2008) Phys Scr 78(058111) 058111/1–058111/6

Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179

Mons M, Piuzzi F, Dimicoli I, Zehnacker A, Lahmani F (2000) Phys Chem Chem Phys 2:5065–5070

Piccirillo S, Coreno M, Giardini-Guidoni A, Pizzela G, Snels M, Teghil R (1993) J Mol Struct 293:197

Portmann S, Inauen A, Luthi HP, Leutwyler S (2000) J Chem Phys 113:9577–9585

Pu L (2004) Chem Rev 104:1687

Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035

Reimann B, Buchhold K, Barth HD, Brutschy B, Tarakeshwar P, Kim KS (2002) J Chem Phys 117:1

Riehn C, Lahmann C, Wassermann B, Brutschy B (1992) Chem Phys Lett 197:443–450

Robertson EG, Simons Phys JP (2001) Chem Chem Phys 3:1–18

Rondino F, Paladini A, Ciavardini A, Casavola A, Catone D, Satta ME, Barth HD, Giardini A, Speranza M, Piccirillo S (2011) P.C.C.P 13:818–824

Sawada M, Mass Spectrom J (1997) Soc Jpn 45:439–458

Scuderi D, Le Barbu-Debus K, Zehnacker A (2011) Phys Chem Chem Phys 13:17916–17929

Simons JP (2009) Mol Phys 107:2435–2458

Sinha RK, Maıtre P, Piccirillo S, Chiavarino B, Crestoni ME, Fornarini S (2010) Phys Chem Chem Phys 12:9794–9800

Speranza M. (2010) In Chiral Recognition in the Gas Phase. In: Zehnacker A (ed) CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 87–131

Speranza M, Satta M, Piccirillo S, Rondino F, Paladini A, Giardini A, Filippi A, Catone D (2005) Mass Spectrom Rev 24:588–610

Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996a) J Phys Chem 100:19357–19363

Svensson M, Humbel S, Morokuma K (1996b) J Chem Phys 105:3654–3661

Vairamani M, Kumari S (2010) In Chiral Recognition in the Gas Phase. In: Zehnacker A (ed) CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 143–166

Young BL, Cooks RG (2007) Int J Mass Spectrom 267:199–204