Ultrasound halo count in the differential diagnosis of atherosclerosis and large vessel giant cell arteritis

I. Monjo1, E. Fernández-Fernández1, José María Mostaza2, Carlos Lahoz2, Juan Molina-Collada3, Eugenio de Miguel1
1Rheumatology Department, Hospital Universitario La Paz, Madrid, Spain
2Department of Internal Medicine, Hospital Carlos III, Madrid, Spain
3Rheumatology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain

Tóm tắt

Abstract Objective To determine the diagnostic discriminant validity between large vessel giant cell arteritis (LV-GCA) and atherosclerosis using ultrasound (US) intima-media thickness (IMT) measurements. Methods We included 44 patients with LV-GCA and 42 with high-risk atherosclerosis. US examinations of the axillary, subclavian, and common carotid arteries (CCA) were systematically performed using a MylabX8 system (Genoa, Italy) with a 4–15-MHz probe. IMT ≥ 1 mm was accepted as pathological. Results The LV-GCA cohort included 24 females and 20 males with a mean age of 72.8 ± 7.6 years. The atherosclerosis group included 25 males and 17 females with a mean age of 70.8 ± 6.5 years. The mean IMT values of all arteries included were significantly higher in LV-GCA than in atherosclerosis. Among LV-GCA patients, IMT ≥ 1 mm was seen in 31 axillary, 30 subclavian, and 28 CCA. In the atherosclerotic cohort, 17 (38.6%) had IMT ≥ 1 mm with axillary involvement in 2 patients, subclavian in 3 patients, carotid distal in 14 patients (5 bilateral), and isolated carotid proximal affectation in 1 case. A cutoff point greater than 1 pathological vessel in the summative count of axillary and subclavian arteries or at least 3 vessels in the count of six vessels, including CCA, showed a precision upper 95% for GCA diagnosis. Conclusion The IMT is higher in LV-GCA than in atherosclerosis. The proposed US halo count achieves an accuracy of > 95% for the differential diagnosis between LV-GCA and atherosclerosis. The axillary and subclavian arteries have higher discriminatory power, while carotid involvement is less specific in the differential diagnosis.

Từ khóa


Tài liệu tham khảo

Karahaliou M, Vaiopoulos G, Papaspyrou S, Kanakis MA, Revenas K, Sfikakis PP. Colour duplex sonography of temporal arteries before decision for biopsy: a prospective study in 55 patients with suspected giant cell arteritis. Arthritis Res Ther. 2006;8(4):1–8.

Ball EL, Walsh SR, Tang TY, Gohil R, Clarke JMF. Role of ultrasonography in the diagnosis of temporal arteritis. Br J Surg. 2010;97(12):1765–71.

Luqmani R, Lee E, Singh S, Gillett M, Schmidt WA, Bradburn M, et al. The role of ultrasound compared to biopsy of temporal arteries in the diagnosis and treatment of giant cell arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol Assess. 2016;20(90):1–238.

Kermani TA, Diab S, Sreih AG, Cuthbertson D, Borchin R, Carette S, et al. Arterial lesions in giant cell arteritis: a longitudinal study. Semin Arthritis Rheum. 2019;48(4):707–13.

Schmidt WA, Seifert A, Gromnica-ihle E, Krause A, Natusch A. Ultrasound of proximal upper extremity arteries to increase the diagnostic yield in large-vessel giant cell arteritis. Rheumatology. 2008;47(1):96–101.

Diamantopoulos AP, Haugeberg G, Hetland H, Soldal DM, Bie R, Myklebust G. Diagnostic value of color Doppler ultrasonography of temporal arteries and large vessels in giant cell arteritis: a consecutive case series. Arthritis Care Res. 2014;66(1):113–9.

Prieto-González S, Arguis P, García-Martínez A, Espígol-Frigolé G, Tavera-Bahillo I, Butjosa M, et al. Large vessel involvement in biopsy-proven giant cell arteritis: prospective study in 40 newly diagnosed patients using CT angiography. Ann Rheum Dis. 2012;71(7):1170–6.

Ashton-Key MR, Gallagher PJ. False-negative temporal artery biopsy. Am J Surg Pathol [Internet]. 1992;16(6):634.

Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77(5):636–43.

de Boysson H, Daumas A, Vautier M, Parienti J-J, Liozon E, Lambert M, et al. Large-vessel involvement and aortic dilation in giant-cell arteritis. A multicenter study of 549 patients. Autoimmun Rev. 2018;17(4):391–8.

Dumont A, Parienti J-J, Delmas C, Boutemy J, Maigné G, Martin Silva N, et al. Factors associated with relapse and dependence on glucocorticoids in giant cell arteritis. J Rheumatol. 2020;47(1):108–16.

De Miguel E, Beltran LM, Monjo I, Deodati F, Schmidt WA, Garcia-Puig J. Atherosclerosis as a potential pitfall in the diagnosis of giant cell arteritis. Rheumatol (United Kingdom). 2018;57(2):318–21.

Molina-Collada J, López Gloria K, Castrejón I, Nieto-González JC, Martínez-Barrio J, Anzola Alfaro AM, et al. Impact of cardiovascular risk on the diagnostic accuracy of the ultrasound Halo Score for giant cell arteritis. Arthritis Res Ther [Internet]. 2022;24(1):232. https://doi.org/10.1186/s13075-022-02920-9.

Chrysidis S, Duftner C, Dejaco C, Schäfer VS, Ramiro S, Carrara G, et al. Definitions and reliability assessment of elementary ultrasound lesions in giant cell arteritis: a study from the OMERACT large vessel vasculitis ultrasound working group. RMD Open. 2018;4(1):1–9.

Schäfer VS, Juche A, Ramiro S, Krause A, Schmidt WA. Ultrasound cut-off values for intima-media thickness of temporal, facial and axillary arteries in giant cell arteritis. Rheumatol (United Kingdom). 2017;56(9):1479–83.

Czihal M, Schröttle A, Baustel K, Lottspeich C, Dechant C, Treitl K-M, et al. B-mode sonography wall thickness assessment of the temporal and axillary arteries for the diagnosis of giant cell arteritis: a cohort study. Clin Exp Rheumatol. 2017;35 Suppl 1(1):128–33.

López-Gloria K, Castrejón I, Nieto-González JC, Rodríguez-Merlos P, Serrano-Benavente B, González CM, et al. Ultrasound intima media thickness cut-off values for cranial and extracranial arteries in patients with suspected giant cell arteritis. Front Med (Lausanne). 2022;9:981804. https://doi.org/10.3389/fmed.2022.981804.

Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by r. Eur Heart J. 2012;33(13):1635–701.

Touboul P-J, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011) An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004. Cerebrovasc Dis. 2012;34(4):290–6.

Hop H, Mulder DJ, Sandovici M, Glaudemans AWJM, van Roon AM, Slart RHJA, et al. Diagnostic value of axillary artery ultrasound in patients with suspected giant cell arteritis. Rheumatology (Oxford). 2020.

Dasgupta B, Smith K, Khan AAS, Coath F, Wakefield RJ. “Slope sign”: a feature of large vessel vasculitis? Ann Rheumatic Dis England. 2019;78:1738.

Nielsen BD, Hansen IT, Keller KK, Therkildsen P, Gormsen LC, Hauge E-M. Diagnostic accuracy of ultrasound for detecting large-vessel giant cell arteritis using FDG PET/CT as the reference. Rheumatology (Oxford). 2020;59(8):2062–73.

Imfeld S, Aschwanden M, Rottenburger C, Schegk E, Berger CT, Staub D, et al. [18F]FDG positron emission tomography and ultrasound in the diagnosis of giant cell arteritis: congruent or complementary imaging methods? Rheumatology (Oxford). 2020;59(4):772–8.

Löffler C, Hoffend J, Benck U, Krämer BK, Bergner R. The value of ultrasound in diagnosing extracranial large-vessel vasculitis compared to FDG-PET/CT: a retrospective study. Clin Rheumatol. 2017;36(9):2079–86.

Engelen L, Ferreira I, Stehouwer CD, Boutouyrie P, Laurent S. Reference intervals for common carotid intima-media thickness measured with echotracking: relation with risk factors. Eur Heart J. 2013;34(30):2368–80.