Ultrasound attenuation of cortical bone correlates with biomechanical, microstructural, and compositional properties

Springer Science and Business Media LLC - Tập 8 - Trang 1-13 - 2024
Saeed Jerban1,2, Victor Barrere2,3, Behnam Namiranian1, Yuanshan Wu2,3, Salem Alenezi4, Erik Dorthe5, Darryl Dlima5, Sameer B. Shah2,3, Christine B. Chung1,2, Jiang Du1,2, Michael P. Andre1,2, Eric Y. Chang1,2
1Department of Radiology, University of California, La Jolla, USA
2Research Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
3Department of Orthopaedic Surgery, University of California, La Jolla, USA
4Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
5Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, USA

Tóm tắt

We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.

Tài liệu tham khảo

Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474. https://doi.org/10.1359/jbmr.081108 Augat P, Reeb H, Claes LE (2009) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363. https://doi.org/10.1002/jbmr.5650110921 Cowin SC (1999) Bone poroelasticity. J Biomech 32:217–238. https://doi.org/10.1016/S0021-9290(98)00161-4 Wehrli FW, Song HK, Saha PK, Wright AC (2006) Quantitative MRI for the assessment of bone structure and function. NMR Biomed 19:731–764. https://doi.org/10.1002/nbm Wang X, Ni Q (2003) Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J Orthop Res 21:312–319. https://doi.org/10.1016/S0736-0266(02)00157-2 Nyman JS, Ni Q, Nicolella DP, Wang X (2008) Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 42:193–199. https://doi.org/10.1016/j.bone.2007.09.049 Horch RA, Nyman JS, Gochberg DF et al (2010) Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med 64:680–687. https://doi.org/10.1002/mrm.22459 Diaz E, Chung CB, Bae WC et al (2012) Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water. NMR Biomed 25:161–168. https://doi.org/10.1002/nbm.1728 Biswas R, Bae WC, Diaz E et al (2012) Ultrashort echo time (UTE) imaging with bi-component analysis: Bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 50:749–755. https://doi.org/10.1016/j.bone.2011.11.029 Ong HH, Wright AC, Wehrli FW (2012) Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res 27:2573–2581. https://doi.org/10.1002/jbmr.1709 Du J, Bydder GM (2013) Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed 26:489–506. https://doi.org/10.1002/nbm.2906 Zanker J, Duque G (2019) Osteoporosis in older persons: old and new players. J Am Geriatr Soc 67:831–840. https://doi.org/10.1111/jgs.15716 Guerri S, Mercatelli D, Gómez MPA et al (2018) Quantitative imaging techniques for the assessment of osteoporosis and sarcopenia. Quant Imaging Med Surg 8:60–85. https://doi.org/10.21037/qims.2018.01.05 Looker AC, Frenk SM (2015) Percentage of adults aged 65 and over with osteoporosis or low bone mass at the femur neck or lumbar spine: United States, 2005–2010. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/data/hestat/osteoporsis/osteoporosis2005_2010.htm#:~:text=During%202005%E2%80%932010%2C%2016.2%25,%25)%20than%20men%20(5.6%25) Kanis JA, Johnell O, Oden A et al (2008) FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. https://doi.org/10.1007/s00198-007-0543-5 Yeni YN, Brown CU, Norman TL (1998) Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. Bone. https://doi.org/10.1016/S8756-3282(97)00227-5 De Laet CEDH, Van Hout BA, Burger H et al (1997) Bone density and risk of hip fracture in men and women: Cross sectional analysis. Br Med J 315:11–15. https://doi.org/10.1136/bmj.315.7102.221 Trajanoska K, Schoufour JD, de Jonge EAL et al (2018) Fracture incidence and secular trends between 1989 and 2013 in a population based cohort: The Rotterdam Study. Bone 114:116–124. https://doi.org/10.1016/j.bone.2018.06.004 Cummings SR (1985) Are patients with hip fractures more osteoporotic? Review of Evidence. Am J Med 8:487–494 Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 18:1254–1259. https://doi.org/10.1136/bmj.312.7041.1254 Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. https://doi.org/10.1007/s001980170006 Russo CR, Lauretani F, Bandinelli S et al (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int. https://doi.org/10.1007/s00198-002-1322-y Schuit SCE, Van Der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 34:195–202. https://doi.org/10.1016/j.bone.2003.10.001 Harvey NC, Glüer CC, Binkley N et al (2015) Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78:216–224. https://doi.org/10.1016/j.bone.2015.05.016 Ulivieri FM, Rinaudo L (2022) The Bone Strain Index: an innovative dual X-ray absorptiometry bone strength index and its helpfulness in clinical medicine. J Clin Med 11:2284. https://doi.org/10.3390/jcm11092284 Jerban S, Chang DG, Ma Y et al (2020) An update in qualitative imaging of bone using ultrashort echo time magnetic resonance. Front Endocrinol (Lausanne) 11:677–689. https://doi.org/10.3389/fendo.2020.555756 Ma Y-J, Jerban S, Jang H et al (2020) Quantitative ultrashort echo time (UTE) magnetic resonance imaging of bone: an update. Front Endocrinol (Lausanne) 11:667–676. https://doi.org/10.3389/fendo.2020.567417 Jerban S, Ma Y, Wei Z et al (2020) Quantitative magnetic resonance imaging of cortical and trabecular bone. Semin Musculoskelet Radiol 24:386–401. https://doi.org/10.1055/s-0040-1710355 Jerban S, Ma Y, Namiranian B et al (2019) Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI). Sci Rep. https://doi.org/10.1038/s41598-019-54559-3 Chang EY, Du J, Chung CB (2015) UTE imaging in the musculoskeletal system. J Magn Reson Imaging 41:870–883. https://doi.org/10.1002/jmri.24713 Jerban S, Ma Y, Wong JH et al (2019) Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure. Bone 123:8–17. https://doi.org/10.1016/j.bone.2019.03.013 Jerban S, Lu X, Jang H et al (2019) Significant correlations between human cortical bone mineral density and quantitative susceptibility mapping (QSM) obtained with 3D Cones ultrashort echo time magnetic resonance imaging (UTE-MRI). Magn Reson Imaging 62:104–110. https://doi.org/10.1016/j.mri.2019.06.016 Jerban S, Szeverenyi N, Ma Y et al (2019) Ultrashort echo time MRI (UTE-MRI) quantifications of cortical bone varied significantly at body temperature compared with room temperature. Investig Magn Reson Imaging 23:202. https://doi.org/10.13104/imri.2019.23.3.202 Jerban S, Ma Y, Li L et al (2019) Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques. Bone 127:120–128. https://doi.org/10.1016/j.bone.2019.05.038 Jerban S, Ma Y, Jang H et al (2020) Water proton density in human cortical bone obtained from ultrashort echo time (UTE) MRI predicts bone microstructural properties. Magn Reson Imaging 67:85–89. https://doi.org/10.1016/j.mri.2020.01.004 Laugier P (2008) Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason Ferroelectr Freq Control 55:1179–1196. https://doi.org/10.1109/TUFFC.2008.782 Raum K, Grimal Q, Varga P et al (2014) Ultrasound to assess bone quality. Curr Osteoporos Rep 12:154–162. https://doi.org/10.1007/s11914-014-0205-4 Jenson F, Padilla F, Bousson V et al (2006) In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. J Acoust Soc Am 119:654–663. https://doi.org/10.1121/1.2126936 Casciaro S (2015) New perspectives in echographic diagnosis of osteoporosis on hip and spine. Clin Cases Miner Bone Metab. https://doi.org/10.11138/ccmbm/2015.12.2.142 André MP, Craven JD, Greenfield MA, Stern R (1980) Measurement of the velocity of ultrasound in the human femur in vivo. Med Phys 7:324–330. https://doi.org/10.1118/1.594713 McCloskey EV, Kanis JA, Odén A et al (2015) Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int 26:1979–1987. https://doi.org/10.1007/s00198-015-3072-7 Karjalainen JP, Riekkinen O, Kröger H (2018) Pulse-echo ultrasound method for detection of post-menopausal women with osteoporotic BMD. Osteoporos Int 29:1193–1199. https://doi.org/10.1007/s00198-018-4408-x Grimal Q, Laugier P (2019) Quantitative ultrasound assessment of cortical bone properties beyond bone mineral density. IRBM 40:16–24 Chin KY, Ima-Nirwana S (2013) Calcaneal quantitative ultrasound as a determinant of bone health status: What properties of bone does it reflect? Int J Med Sci 10:1778–1783. https://doi.org/10.7150/ijms.6765 Han S, Rho J, Medige J et al (1996) Ultrasound velocity and broadband attenuation over a wide range of bone mineral density. Osteoporos Int 6:291–296. https://doi.org/10.1007/BF01623387 Lasschuit JWJ, Center JR, Greenfield JR, Tonks KTT (2020) Comparison of calcaneal quantitative ultrasound and bone densitometry parameters as fracture risk predictors in type 2 diabetes mellitus. Diabet Med 37:1902–1909. https://doi.org/10.1111/dme.14183 Yen CC, Lin WC, Wang TH et al (2021) Pre-screening for osteoporosis with calcaneus quantitative ultrasound and dual-energy X-ray absorptiometry bone density. Sci Rep 11. https://doi.org/10.1038/s41598-021-95261-7 Schraders K, Zatta G, Kruger M et al (2019) Quantitative ultrasound and dual X-ray absorptiometry as indicators of bone mineral density in young women and nutritional factors affecting it. Nutrients 11. https://doi.org/10.3390/nu11102336 Yang L, Udall WJM, McCloskey EV, Eastell R (2014) Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25:251–263. https://doi.org/10.1007/s00198-013-2401-y Laugier P, Haïat G (2011) Bone quantitative ultrasound. Springer, Dordrecht Jerban S, Lu X, Dorthe EW et al (2020) Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model. NMR Biomed 33:e4233. https://doi.org/10.1002/nbm.4233 Lu X, Jerban S, Wan L et al (2019) Three dimensional ultrashort echo time imaging with tri-component analysis for human cortical bone. Magn Reson Med 82:348–355. https://doi.org/10.1002/mrm.27718 Lees S, Klopholz DZ (1992) Sonic velocity and attenuation in wet compact cow femur for the frequency range 5 to 100 MHz. Ultrasound Med Biol 18:303–308. https://doi.org/10.1016/0301-5629(92)90099-V Du J, Chiang AJT, Chung CB et al (2010) Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence. Magn Reson Imaging 28:178–184. https://doi.org/10.1016/j.mri.2009.06.002 Chen J, Chang EY, Carl M et al (2016) Measurement of bound and pore water T1 relaxation times in cortical bone using three-dimensional ultrashort echo time cones sequences. Magn Reson Med 77:2136–2145. https://doi.org/10.1002/mrm.26292 Ma Y, Shao H, Du J, Chang EY (2016) Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed 29:1546–1552. https://doi.org/10.1002/nbm.3609 Ma Y, Chang EY, Carl M, Du J (2017) Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence. Magn Reson Med 79:692–700. https://doi.org/10.1002/mrm.26716 Ma Y, Tadros A, Du J, Chang EY (2018) Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 79:1941–1949. https://doi.org/10.1002/mrm.26846 Ma Y, Lu X, Carl M, et al (2018) Accurate T 1 mapping of short T 2 tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-Cones AFI-VTR) method. Magn Reson Med 80:598–608. https://doi.org/10.1002/mrm.27066 ASTM (2011) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials 1. In: Annual Book of ASTM Standards, vol 1–11. https://doi.org/10.1520/D0790-10 Cowin SC, coauthors (2001) Handbook Bone Mechanics, Second edn. CRC Press Sasso M, Haïat G, Yamato Y et al (2007) Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in Vitro study. Ultrasound Med Biol 33:1933–1942. https://doi.org/10.1016/j.ultrasmedbio.2007.05.022 Xu Y, Xu Y, Ding Z et al (2017) Correlation between ultrasonic power spectrum and bone density on the heel. Ultrasonics 73:77–81. https://doi.org/10.1016/j.ultras.2016.08.023 Serpe L, Rho J-Y (1996) The nonlinear transition period of broadband ultrasound attenuation as bone density varies. J Biomech 29:963–966. https://doi.org/10.1016/0021-9290(95)00146-8 Langtont CM, A14 A V, Riggss CM et al (1990) Clinical Physics and Physiological Measurement. A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone. Clin Phys Physiol Meas 11:243–249. https://doi.org/10.1088/0143-0815/11/3/007 Bensamoun S, Ho Ba Tho MC, Luu S et al (2004) Spatial distribution of acoustic and elastic properties of human femoral cortical bone. J Biomech 37:503–510. https://doi.org/10.1016/j.jbiomech.2003.09.013 Wear KA (2000) The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone. IEEE Trans Ultrason Ferroelectr Freq Control 47:265–273. https://doi.org/10.1109/58.818770 Yamato Y, Matsukawa M, Otani T et al (2006) Distribution of longitudinal wave properties in bovine cortical bone in vitro. Ultrasonics 44. https://doi.org/10.1016/j.ultras.2006.06.055 Jerban S, Ma Y, Wan L et al (2019) Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling correlates significantly with cortical bone porosity measured with micro-computed tomography (μCT). NMR Biomed 32:e4045. https://doi.org/10.1002/nbm.4045 Jerban S, Ma Y, Alenezi S et al (2023) Ultrashort Echo Time (UTE) MRI porosity index (PI) and suppression ratio (SR) correlate with the cortical bone microstructural and mechanical properties: Ex vivo study. Bone 169:116676. https://doi.org/10.1016/j.bone.2023.116676 Jerban S, Ma Y, Dorthe EW et al (2019) Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling. Bone Rep 11:100220. https://doi.org/10.1016/j.bonr.2019.100220 Glinkowski WM, Żukowska A, Glinkowska B (2023) Quantitative ultrasound examination (QUS) of the calcaneus in long-term martial arts training on the example of long-time practitioners of Okinawa Kobudo/Karate Shorin-Ryu. Int J Environ Res Public Health 20. https://doi.org/10.3390/ijerph20032708 Svilainis L, Lukoseviciute K, Liaukonis D (2017) Reiterative deconvolution: new technique for time of flight estimation errors reduction in case of close proximity of two reflections. Ultrasonics 76:154–165. https://doi.org/10.1016/j.ultras.2017.01.003