Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiết xuất Protein từ Hạt Cafe Xanh bằng Phương Pháp Hỗ Trợ Siêu âm và Vi Sóng: Tác Động của Các Biến Đổi Quy Trình lên Tính Toàn Vẹn của Protein
Tóm tắt
Nhu cầu về protein đang ngày càng gia tăng và các phương pháp chiết xuất thân thiện với môi trường là cần thiết để đạt được các mục tiêu bền vững. Việc thu hồi các sản phẩm phụ từ chuỗi thực phẩm nông nghiệp cũng đã trở thành một ưu tiên từ góc độ kinh tế tuần hoàn. Một số sản phẩm phụ vẫn chưa được khai thác nhiều để chiết xuất protein, chẳng hạn như các sản phẩm phụ từ cà phê. Trong công trình này, nhiều công nghệ chiết xuất đổi mới đã được áp dụng để thu hồi phân đoạn protein từ hạt cà phê xanh không đạt tiêu chuẩn (CGB), sử dụng một phương pháp tiếp cận có thể liên kết các thông số quy trình với chất lượng cuối cùng của các protein được chiết xuất. Kỹ thuật chiết xuất hỗ trợ bằng sóng siêu âm (UAE) đã cho thấy có tác động nhỏ đến chất lượng của protein, nhờ khả năng làm lạnh hệ thống, trong khi kỹ thuật chiết xuất hỗ trợ bằng vi sóng (MAE) cho thấy một mức độ phân hủy nhất định do nhiệt độ cao đạt được. Kết quả chỉ ra rằng việc kiểm soát nhiệt độ nghiêm ngặt là cần thiết trong quá trình chiết xuất kiềm để bảo tồn chất lượng của phân đoạn protein.
Từ khóa
#chiết xuất protein #hạt cà phê xanh #phương pháp hỗ trợ siêu âm #phương pháp hỗ trợ vi sóng #bền vững môi trường #kinh tế tuần hoànTài liệu tham khảo
Al-Dhabi, N. A., Ponmurugan, K., & Jeganathan, P. M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206–213.
Almeida, F. S., Dias, F. F. G., Sato, A. C. K., De Moura, N., & Bell, J. M. L. (2022). Scaling up the two-stage countercurrent extraction of oil and protein from green coffee beans: Impact of proteolysis on extractability, protein functionality, and oil recovery. Food and Bioprocess Technology, 15, 1794–1809.
Álvarez-Viñas, M., Rodríguez-Seoane, P., Flórez-Fernández, N., Torres, M. D., Díaz-Reinoso, B., Moure, A., & Domínguez, H. (2021). Subcritical water for the extraction and hydrolysis of protein and other fractions in biorefineries from agro-food wastes and algae: A review. Food and Bioprocess Technology, 14, 373–387.
Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., & Ferreira, S. R. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 15(88), 544–552.
Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology, 7, 3493–3503.
Bedin, S., Zanella, K., Bragagnolo, N., & Taranto, O. P. (2019). Implication of microwaves on the extraction process of rice bran protein. Brazilian Journal of Chemical Engineering, 36(4), 1653–1665.
Bedin, S., Netto, F. M., Bragagnolo, N., & Taranto, O. P. (2020). Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Separation Science and Technology, 55(2), 300–312.
Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293.
Chan, C. H., Yusoff, R., Ngoh, G. C., & Kung, F. W. L. (2011). Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A, 1218(37), 6213–6225.
Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A Review. Ultrason. Sonochem., 34, 540–560.
Ciborowski, P., & Silberring, J. (2016). Proteomic profiling and analytical chemistry: The Crossroads (2nd ed.). Elsevier B.V.
Contreras, M.d.M., Lama-Muñoz, A., Manuel Gutiérrez-Pérez, J., Espínola, F., Moya, M., Castro, E. (2019). Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology, 280, 459–477.
De Schouwer, F., Claes, L., Vandekerkhove, A., Verduyckt, J., & De Vos, D. E. (2019). Protein-rich biomass waste as a resource for future biorefineries: State of the art, challenges, and opportunities. Chemsuschem, 12(7), 1272–1303.
De Vrese, M., Frik, R., Roos, N., & Hagemeister, H. (2000). Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with (15)N-labeling. Journal of Nutrition, 130(8), 2026–2031.
Friedman, M. (1999). Chemistry, nutrition, and microbiology of D-amine acids. Journal of Agriculture and Food Chemistry, 47(9), 3457–3479.
Full, G., Lonzarich, V., Suggi-Liverani, F. (1999). Differences in chemical composition of electronically sorted green coffee beans. In: Proceedings of the 18th International Scientific Colloquium on Coffee, Helsinki, Finland.
Gallina Toschi, T., Cardenia, V., Bonaga, G., Mandrioli, M., & Rodriguez-Estrada, M. T. (2014). Coffee silverskin: Characterization, possible uses, and safety aspects. Journal of Agriculture and Food Chemistry, 62(44), 10836–10844.
Gong, M., Aguirre, A.-M., & Bassi, A. (2016). Technical issues related to characterization, extraction, recovery, and purification of proteins from different waste sources. In G. S. Dillon (Ed.), Protein byproducts: Transformation from environmental burden into value-added products (pp. 89–106). Academic Press.
González-García, E., Marina, M. L., & García, M. C. (2014). Plum (Prunus domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. J. Funt. Foods, 11, 428–437.
Gorguc, A., Ozer, P., & Yilmaz, F. M. (2019). Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. Journal of Food Processing and Preservation, 44(1), e14304.
Guan, J. T., Taikai, R., Toraya, K., Ogawa, T., Muramoto, K., Mohri, S., Ishikawa, D., Fujii, T., Chi, H., & Cho, S. J. (2017). Effects of alkaline deamidation on the chemical properties of rice bran protein. Food Sci. Technol. Res., 23(5), 697–704.
Guglielmetti, A., D’Ignoti, V., Ghirardello, D., Belviso, S., & Zeppa, G. (2017). Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. Italian Journal of Food Science, 29(3), 409–423.
Hildebrand, G., Poojary, M. M., O’Donnell, C., Lund, M. N., Garcia-Vaquero, M., & Tiwari, B. K. (2020). Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. Journal of Applied Phycology, 32(3), 1709–1718.
Horak, J., Gerhardt, H., Theiner, J., & Lindner, W. (2014). Correlation between amino acid racemization and processing conditions for various wheat products, oil seed press cakes and lignin samples. Food and Bioproducts Processing, 92(C4), 355–368.
IEC 60705. (2010). Household microwave ovens - Methods for measuring performance. TC 59/SC 59K.
Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., Belwal, T., Dahuja, A., Joshi, S., Berwal, M. K., Satankar, V., Bhoite, A. G., Amarowicz, R., Kaur, C., & Kennedy, J. F. (2021). Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll., 115, 106595.
Liardon, R., & Hurrell, R. F. (1983). Amino acid racemization in heated and alkali-treated proteins. Journal of Agriculture and Food Chemistry, 37, 432–437.
Liu, R. L., Yu, P., Ge, X. L., Bai, X. F., Li, X. Q., & Fu, Q. (2017). Establishment of an aqueous PEG 200-based deep eutectic solvent extraction and enrichment method for pumpkin (Cucurbita moschata) seed protein. Food Analytical Methods, 10, 1669–1680.
Marcone, G. L., Rosini, E., Crespi, E., & Pollegioni, L. (2020). D-amino acids in foods. Applied Microbiology and Biotechnology, 104, 555–574.
Moreno-González, M., & Ottens, M. (2021). A structured approach to recover valuable compounds from agri-food side streams. Food and Bioprocess Technology, 14, 1387–1406.
Nathia-Neves, G., & Alonso, E. (2021). Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: Recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food and Bioproducts Processing, 125, 57–67.
Ngamsuk, S., Hsu, J. L., Huang, T. C., & Suwannaporn. (2020). Ultrasonication of milky stage rice milk with bioactive peptides from rice bran: Its bioactivities and absorption. Food and Bioprocess Technology, 13, 462–474.
Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10, 543–555.
Palla, G., Marchelli, R., Dossena, A., & Casnati, G. (1989). Occurrence of D-amino acids in food: Detection by capillary gas chromatography and by reversed-phase high-performance liquid chromatography with L-phenylalaninamides as chiral selectors. J. Chrom. A, 475, 45–53.
Panda, D., & Manickam, S. (2017). Cavitation technology-The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Applied Sciences, 9(4), 766.
Peralta-Jiménez, L., & Cañizares-Macías, M. P. (2013). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology, 6, 3522–3529.
Prandi, B., Ferri, M., Monari, S., Zurlini, C., Cigognini, I., Verstringe, S., Schaller, D., Walter, M., Navarini, L., Tassoni, A., Sforza, S., & Tedeschi, T. (2021a). Extraction and chemical characterization of functional phenols and proteins from coffee (Coffea arabica) by-products. Biomolecules, 11, 1571.
Prandi, B., Zurlini, C., Cigognini, M. I., Cutroneo, S., Di Massimo, M., Bondi, M., Brutti, A., Sforza, S., & Tedeschi, T. (2021b). Targeting the nutritional value of proteins from legumes by-products through mild extraction technologies. Frontiers in Nutrition, 8, 446.
Rahman, M. M., & Lamsal, B. P. (2021). Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf., 20(2), 1457–1480.
Ramalakshmi, K., Kubra, I. R., & Rao, L. J. M. (2007). Physicochemical characteristics of green coffee: Comparison of graded and defective beans. Journal of Food Science, 72(5), S333–S337.
Rocha, M. V., de Matos, L. J., Lima, L. P., Figueiredo, P. M., Lucena, I. L., Fernandes, F. A., & Gonçalves, L. R. (2014). Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresource Technology, 167, 343–3488.
Roselló-Soto, E., Barba, F. J., Parniakov, O., Galanakis, C. M., Lebovka, N., Grimi, N., & Vorobiev, E. (2015). High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food and Bioprocess Technology, 8, 885–894.
Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri, A., Bikaki, M., Corvini, P., Ferri, M., Tassoni, A., & Navarini, L. (2021). Monomers, materials and energy from coffee by-products: A review. Sustainability, 13(12), 6921.
Statista. (2021). Coffee production worldwide from 2003/04 to 2019/20 (in million 60-kilogram bags). https://www.statista.com/statistics/263311/worldwide-production-of-coffee/. Last Accessed 03 Nov 2022.
Sun, X. Y., Zhang, W., Zhang, L. F., Tian, S. J., & Chen, F. S. (2020). Molecular and emulsifying properties of arachin and conarachin of peanut protein isolate from ultrasound-assisted extraction. LWT-Food Sci. Technol., 132, 109790.
Taragjini, E., Ciardi, M., Musari, E., Villaró, S., Morillas-España, A., Alarcón, F. J., & Lafarga, T. (2022). Pilot-Scale production of A. platensis: Protein isolation following an ultrasound-assisted strategy and assessment of techno-functional properties. Food and Bioprocess Technology, 15, 1299–1310.
Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. Trends Analyt. Chem., 71, 100–109.
Varghese, T., & Pare, A. (2019). Effect of microwave assisted extraction on yield and protein characteristics of soymilk. Journal of Food Engineering, 262, 92–99.
Vásquez-Villanueva, R., Marina, M. L., & García, M. C. (2015). Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: Extraction and characterization of ACE-inhibitory peptides from peach stones. J. Funct. Foods, 18A, 137–146.
Vergara-Barberán, M., Lerma-García, M. J., Herrero-Martínez, J. M., & Simó-Alfonso, E. F. (2014). Efficient extraction of olive pulp and stone proteins by using an enzyme-assisted method. Journal of Food Science, 79(7), C1298–C1304.
Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innovative Food Science and Emerging Technologies, 9(2), 161–169.
Wang, B., Meng, T., Ma, H., Zhang, Y., Li, Y., Jin, J., & Ye, X. (2016). Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrasonics Sonochemistry, 32, 307–313.
Wen, L., Álvarez, C., Zhang, Z., Poojary, M. M., Lund, M. N., Sun, D.-W., & Tiwari, B. K. (2021). Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Conv. Bioref., 11, 1575–1585.
Xu, Y., Li, Y., Bao, T., Zheng, X., Chen, W., & Wang, J. (2017). A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chemistry, 15(221), 114–122.
Zagon, J., Dehne, L.-I., & Bögl, K.-W. (1994). D-amino acids in organisms and food. Nutrition Research, 14(3), 445–463.
Zukefli, S. N., Chua, L. S., & Rahmat, Z. (2017). Protein extraction and identification by gel electrophoresis and mass spectrometry from edible bird’s nest samples. Food Analytical Methods, 10, 387–398.
