Ultrasonic Processing of Single-Walled Carbon Nanotube–Glucose Oxidase Conjugates: Interrelation of Bioactivity and Structure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Loiseau A, et al. Understanding carbon nanotubes from basics to applications. Lecture notes in physics. Heidelberg: Springer; 2006.
Geckeler KE, Rosenberg E. Functional nanomaterials. Valencia: American Scientific; 2006.
Steed JW, Turner DR, Wallace KJ. Core concepts in supramolecular chemistry and nanochemistry. West Sussex: Wiley; 2007.
Kumar CSSR. Nanomaterials for biosensors. Nanotechnologies for the life sciences. Weinheim: Wiley-VCH; 2007.
Kim D, Nepal D, Geckeler KE. Individualization of single-walled carbon nanotubes: is the solvent important? Small. 2005;1(11):1117–24. doi: 10.1002/smll.200500167 .
O'Connell MJ, et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 2002;297(5581):593–6. doi: 10.1126/science.1072631 .
Kovtyukhova NI, et al. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J Am Chem Soc. 2003;125(32):9761–9. doi: 10.1021/ja0344516 .
Kumar CSSR. Biofunctionalization of nanomaterials. In: Kumar CSSR, editor. Nanotechnologies for the life sciences. Weinheim: Wiley-VCH; 2006.
Guiseppi-Elie A, Lei C, Baughman RH. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology. 2002;13(5):559–64. doi: 10.1088/0957-4484/13/5/303 .
Patolsky F, et al. C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase. J Electroanal Chem. 1998;454(1–2):9–13. doi: 10.1016/S0022-0728(98)00257-5 .
Davis JJ, Coleman KS, Azamian BR, Baqshaw CB, Green ML. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J. 2003;9(16):3732–9. doi: 10.1002/chem.200304872 .
Liang W, Zhuobin Y. Direct electrochemistry of glucose oxidase at a gold electrode modified with single-wall carbon nanotubes. Sensors. 2003;3(3):544–54. doi: 10.3390/s31200544 .
Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem. 2004;332(1):75–83. doi: 10.1016/j.ab.2004.05.057 .
Liu Y, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron. 2005;21(6):984–8. doi: 10.1016/j.bios.2005.03.003 .
Geckeler KE. Advanced macromolecular and supramolecular materials and processes. New York: Kluwer; 2003.
Mason TJ, Lorimer JP. Applied sonochemistry: uses of power ultrasound in chemistry and processing. Weinheim: Wiley-VCH; 2002.
Dhriti Nepal KG. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small. 2006;2(3):406–12. doi: 10.1002/smll.200500351 .
Dhriti Nepal KG. Proteins and carbon nanotubes: close encounter in water. Small. 2007;3(7):1259–65. doi: 10.1002/smll.200600511 .
Bergmeyer HU, Gawehn K, Grassl M. Methods of enzymatic analysis. New York: Academic; 1974. p. 457–458.
Yang JT, Wu CS, Martinez HM. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269.
Kim JB, Premkumar T, Giani O, Robin J-J, Schue F, Geckeler KE. A mechanochemical approach to nanocomposites using single-wall carbon nanotubes and polyL-lysine. Macromol Rapid Commun. 2007;28(6):767–71. doi: 10.1002/marc.200600802 .
Denslow ND, Wingfield PT, Rose K. Overview of the characterization of recombinant proteins. Current Protocols in Protein Science 1994;7.1.1–7.1.13
Bateman RC Jr, Evans JA. Using the glucose oxidase/peroxidase system in enzyme kinetics. J Chem Educ. 1995;72(12):A240–1.
Simpson C, et al. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH. Protein Expr Purif. 2007;51(2):260–6. doi: 10.1016/j.pep.2006.09.013 .