Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises

Molecular Ecology - Tập 19 Số s1 - Trang 4-20 - 2010
Simon Creer1, Vera G. Fonseca2, Dorota L. Porazinska3, Robin M. Giblin-davis3, Way Sung4, Deborah M. Power5, Margaret Packer6, Gary R. Carvalho2, Mark Blaxter7, David T. Bilton8, W. Kelley Thomas4
1Environment Centre Wales, Bangor University, Gwynedd, UK
2School of Biological Sciences, Environment Centre Wales, Deiniol Road, College of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
3Fort Lauderdale Research and Education Center, University of Florida, IFAS, 3205 College Avenue, Fort Lauderdale, FL 33314, USA
4Hubbard Center for Genome Studies, University of New Hampshire, 35 Colovos Rd, Durham, NH, 03824, USA
5Centre of Marine Sciences, CCMAR–CIMAR Associate Laboratory, University of Algarve, Gambelas, 8005‐139 Faro, Portugal
6Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
7Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3JT, UK
8School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK

Tóm tắt

AbstractBiodiversity assessment is the key to understanding the relationship between biodiversity and ecosystem functioning, but there is a well‐acknowledged biodiversity identification gap related to eukaryotic meiofaunal organisms. Meiofaunal identification is confounded by the small size of taxa, morphological convergence and intraspecific variation. However, the most important restricting factor in meiofaunal ecological research is the mismatch between diversity and the number of taxonomists that are able to simultaneously identify and catalogue meiofaunal diversity. Accordingly, a molecular operational taxonomic unit (MOTU)‐based approach has been advocated for en mass meiofaunal biodiversity assessment, but it has been restricted by the lack of throughput afforded by chain termination sequencing. Contemporary pyrosequencing offers a solution to this problem in the form of environmental metagenetic analyses, but this represents a novel field of biodiversity assessment. Here, we provide an overview of meiofaunal metagenetic analyses, ranging from sample preservation and DNA extraction to PCR, sequencing and the bioinformatic interrogation of multiple, independent samples using 454 Roche sequencing platforms. We report two examples of environmental metagenetic nuclear small subunit 18S (nSSU) analyses of marine and tropical rainforest habitats and provide critical appraisals of the level of putative recombinant DNA molecules (chimeras) in metagenetic data sets. Following stringent quality control measures, environmental metagenetic analyses achieve MOTU formation across the eukaryote domain of life at a fraction of the time and cost of traditional approaches. The effectiveness of Roche 454 sequencing brings substantial advantages to studies aiming to elucidate the molecular genetic richness of not only meiofaunal, but also all complex eukaryotic communities.

Từ khóa


Tài liệu tham khảo

10.1093/molbev/msl136

Abebe E, 2003, Comparison of biological, molecular, and morphological methods of species identification in a set of cultured Panagrolaimus isolates, Journal of Nematology, 35, 119

10.1128/AEM.71.12.7724-7736.2005

10.1007/978-1-4615-2381-9

Baermann G, 1917, Eine einfache Methode zur Auffindung von Ancyclostomum (Nematode) Larven in Erdproben, Nederlands Tijdscrift Voor Geneeskunde, 57, 131

10.1111/j.1471-8286.2005.01095.x

10.3354/meps320001

10.1007/s00227-008-0945-8

Binladen J, 2007, The use of coded PCR primers enables high‐throughput sequencing of multiple homolog amplification products by 454 parallel sequencing, PLoS ONE, 2, 1, 10.1371/journal.pone.0000197

10.1038/421122a

10.1016/S0169-5347(03)00102-2

10.1038/32160

Blaxter M, 2003, Molecular barcoding for nematode identification and diversity studies, Journal of Nematology, 35, 326

10.1098/rstb.2005.1725

10.1093/jhered/91.2.156

10.1093/oxfordjournals.molbev.a025898

10.1038/453687a

Carvalho G, 2009, Genomics in the Discovery and Monitoring of Marine Biodiversity

10.1093/nar/gkg500

10.1093/bioinformatics/17.12.1093

10.1146/annurev.bi.53.070184.003041

10.1163/156854100508845

10.1016/j.cub.2007.11.056

10.1098/rstb.2005.1726

10.3354/meps300091

10.1111/j.1365-294X.2008.03846.x

Doi RH, 1965, Conservation of ribosomal and messenger ribonucleic acid Cistrons in Bacillus species, Journal of Bacteriology, 90, 384, 10.1128/jb.90.2.384-390.1965

10.1073/pnas.54.2.491

10.1186/1471-2164-7-57

Esteves AM, 1998, The behavior of sugar flotation technique in meiofauna extraction from different samples, Tropical Ecology, 39, 283

10.1046/j.1365-294X.2002.01485.x

10.1111/j.1471-8286.2005.01009.x

10.1111/j.0014-3820.2002.tb00191.x

10.1016/j.ympev.2009.04.011

10.1038/nature05587

Giere O, 2009, Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments

10.1093/biomet/40.3-4.237

10.1016/j.tig.2007.02.001

10.1242/jeb.001370

10.1101/gr.085464.108

10.1038/nmeth.1184

10.1098/rspb.2002.2218

10.1098/rsbl.2003.0025

Higgins RP, 1988, Introduction to the Study of Meiofauna

10.1128/AEM.68.4.1585-1594.2002

10.1093/bioinformatics/bth226

10.1126/science.1146689

10.1038/455481a

10.1163/156854101750413270

10.2307/1934145

Huse S, 2007, Online commentary on Binladen J et al. (2007), PLoS ONE, 2, e197

10.1186/gb-2007-8-7-r143

10.1101/gr.5969107

10.1111/j.1471-8286.2007.01748.x

s’Jacob JJ, 1984, A Manual for Practical Work in Nematology

Jenkins W, 1964, A rapid centrifugal‐flotation technique for separating nematodes from soil, Plant Disease Research, 48, 692

10.1016/S0168-6496(03)00257-5

Lambshead PJD, 2004, Nematology: Advances and Perspectives. Vol 1: Nematode Morphology, Physiology and Ecology, 436

10.1046/j.1365-2699.2003.00843.x

10.1038/34166

10.1016/j.gene.2008.09.013

10.1093/bioinformatics/btp187

10.1111/j.1574-6968.1989.tb03688.x

Magurran AE, 2004, Measuring Biological Diversity

10.1038/nature03959

10.1098/rstb.2005.1723

10.2307/1932674

10.1111/j.1365-294X.2009.04478.x

10.1016/j.ympev.2006.08.025

10.1093/nar/gkm566

10.1093/nar/gkm1095

10.1093/nar/18.7.1687

10.1038/35054541

10.1016/S0966-842X(01)02257-0

10.1038/nature06513

10.1016/0278-4343(89)90057-5

Pace B, 1971, Homology of ribosomal ribonucleic acid diverse bacterial species with Escherichia coli and Bacillus stearothermophilus, Journal of Bacteriology, 107, 543, 10.1128/jb.107.2.543-547.1971

Pace B, 1971, Homology of ribosomal ribonucleic acid of Desulfovibrio species with Desulfovibrio vulgaris, Journal of Bacteriology, 106, 717, 10.1128/jb.106.3.717-719.1971

10.1093/nar/gkm760

10.1111/j.1461-0248.2006.00924.x

Picard C, 1992, Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Applied and Environmental Microbiology, 58, 2717, 10.1128/aem.58.9.2717-2722.1992

10.1093/molbev/msh244

Platt HM, 1983, Free‐living Marine Nematodes. Part I British Enoplids

10.1111/j.1755-0998.2009.02611.x

10.1111/j.1755-0998.2009.02819.x

10.1007/BF02772108

Porteus LA, 1997, An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications, Molecular Ecology, 6, 787, 10.1046/j.1365-294X.1997.00241.x

10.1111/j.1365-294X.2008.04075.x

10.1093/nar/gkm864

Qiu X, 2001, Evaluation of PCR‐generated chimeras, mutations, and heteroduplexes with 16S rRNA gene‐based cloning, Applied and Environmental Microbiology, 67, 880, 10.1128/AEM.67.2.880-887.2001

10.1111/j.1471-8286.2007.01678.x

10.1038/nmeth0909-636

10.1186/1471-2105-7-162

Sambrook J, 1989, Molecular Cloning. A Laboratory Manual

10.1073/pnas.74.12.5463

10.1128/AEM.71.3.1501-1506.2005

10.1139/z91-013

10.1111/j.1462-2920.2008.01626.x

Snelgrove P, 1997, The importance of marine sediment biodiversity in ecosystem processes, Ambio, 26, 578

10.1073/pnas.0605127103

10.1002/9780470995129.ch6

10.1111/j.1365-294X.2009.04480.x

10.1016/j.ympev.2008.04.028

10.1093/nar/gkp285

10.1111/j.1365-2664.2006.01188.x

10.1093/molbev/msm092

10.1016/S0169-5347(02)00041-1

Thomas W, 1997, DNA sequences from formalin‐fixed nematodes: integrating molecular and morphological approaches to taxonomy, Journal of Nematology, 29, 250

10.1038/nm1437

10.1093/molbev/msi084

10.1126/science.1093857

10.1016/j.jembe.2008.07.023

10.1111/j.1744-7348.1965.tb07864.x

10.1111/j.1095-8312.1985.tb02048.x

10.1111/j.1574-6976.1997.tb00351.x

10.1111/j.1095-8312.1999.tb01918.x

10.1016/j.ympev.2007.02.006

10.1163/156854106778493448

Yu Y, 2006, FastGroupII: a web‐based bioinformatics platform for analyses of large 16S rDNA libraries, BMC Bioinformatics, 7, 57, 10.1186/1471-2105-7-57

10.1016/S0169-5347(97)84926-9

10.1089/10665270050081478

10.1128/aem.62.2.316-322.1996