Ultralow Electrical Hysteresis along with High Energy‐Storage Density in Lead‐Based Antiferroelectric Ceramics

Advanced Electronic Materials - Tập 6 Số 4 - 2020
Wei Huang1, Guanglong Ge1, Fei Yan1, Bo Shen1, Jiwei Zhai1
1Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials Functional Materials Research Laboratory School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China

Tóm tắt

Abstract

Antiferroelectric ceramics with extraordinary energy‐storage density have gained exponentially soaring attention for their applications in pulsed power capacitors. Nevertheless, high energy dissipation is a deficiency of antiferroelectric materials. The modulation of Ba/La‐doped (Pb0.91BaxLa0.06−2x/3)(Zr0.6Sn0.4)O3 (x = 0.015, 0.03, 0.045, 0.06) antiferroelectric ceramics is aimed at increasing the energy efficiency and obtaining an ideal energy storage density. The traditional solid‐state reaction is exploited for ceramics fabrication and all prepared samples exhibit an ultralow electrical hysteresis due to the local structural heterogeneity, as verified by Raman spectroscopy. Of particular importance is the fact that the (Pb0.91Ba0.045La0.03)(Zr0.6Sn0.4)O3 ceramic possesses an excellent recoverable energy storage density (Wrec = 8.16 J cm−3) and a remarkable energy efficiency (η = 92.1%) simultaneously under an electric field of 340 kV cm−1. Moreover, the corresponding ceramic exhibits a superior discharge current density (CD = 1498.6 A cm−2), a high level of power density (PD = 202.3 MW cm−3), and a nanosecond‐level discharge period (53 ns). This provides a promising antiferroelectric material for fabricating ceramic capacitors with excellent energy storage and high power characteristics.

Từ khóa


Tài liệu tham khảo

10.1038/nature14647

10.1039/C8TC02368A

10.1039/C6TA07803F

10.1016/j.jeurceramsoc.2016.08.021

10.1021/acs.inorgchem.7b02181

10.1080/21663831.2018.1457095

10.1016/j.pmatsci.2014.01.002

10.1002/adfm.201807321

10.1039/C9TA02149C

10.1063/1.4973425

10.1002/adma.201701824

10.1039/C8TA09353A

10.1002/adma.201802155

10.1016/j.ceramint.2014.10.139

10.1179/143307511X13085642037628

10.1179/1433075X12Y.0000000067

10.1016/j.ceramint.2003.12.089

10.1016/j.jeurceramsoc.2019.07.024

10.1016/j.jeurceramsoc.2019.07.037

10.1111/j.1551-2916.2005.00102.x

10.1039/C7TA09857J

Liu Z., 2015, Appl. Phys. Lett., 106, 15

10.1063/1.4961329

10.1063/1.355995

10.1021/acs.chemmater.8b04470

10.1016/j.jeurceramsoc.2018.09.039

10.1103/PhysRevLett.112.197601

10.1111/jace.12712

10.1016/j.jssc.2011.07.014

10.1063/1.4816093

10.1016/j.ceramint.2013.10.131

10.1080/01411594.2014.900554

10.1080/01411594.2016.1178743

10.1088/0953-8984/19/13/136003

10.1002/adfm.201801504

10.1039/C9TC00944B

10.1016/j.ceramint.2017.06.005

10.1063/1.4923373

10.1111/jace.16878

10.1039/C9TC00087A

10.1063/1.5044712

10.1039/C6TA04107H

10.1063/1.4979833

10.1111/jace.14297

10.1016/j.scriptamat.2017.07.010