Ultraholomorphic sectorial extensions of Beurling type

Springer Science and Business Media LLC - Tập 12 - Trang 1-20 - 2021
David Nicolas Nenning1, Armin Rainer1, Gerhard Schindl1
1Fakultät für Mathematik, Universität Wien, Wien, Austria

Tóm tắt

We prove sectorial extension theorems for ultraholomorphic function classes of Beurling type defined by weight functions with a controlled loss of regularity. The proofs are based on a reduction lemma, due to the second author, which allows to extract the Beurling from the Roumieu case, which was treated recently by Jiménez-Garrido, Sanz, and the third author. To have control on the opening of the sectors, where the extensions exist, we use the (mixed) growth index and the order of quasianalyticity of weight functions. As a consequence, we obtain corresponding extension results for classes defined by weight sequences. Additionally, we give information on the existence of continuous linear extension operators.

Tài liệu tham khảo

Bonet, J., Braun, R.W., Meise, R., Taylor, B.A.: Whitney’s extension theorem for nonquasianalytic classes of ultradifferentiable functions. Stud. Math. 99(2), 155–184 (1991) Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 424–444 (2007) Bonet, J., Meise, R., Taylor, B.A.: On the range of the Borel map for classes of non-quasianalytic functions. N.-Holl. Math. Stud. Prog. Funct. Anal. 170, 97–111 (1992) Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17(3–4), 206–237 (1990) Chaumat, J., Chollet, A.-M.: Surjectivitè de l’application restriction à un compact dans les classes de fonctions ultradifférentiables. Math. Ann. 298, 7–40 (1994) Jiménez-Garrido, J., Sanz, J., Schindl, G.: Indices of O-regular variation for weight functions and weight sequences. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A. Mat. RACSAM 113(4), 3659–3697 (2019) Jiménez-Garrido, J., Sanz, J., Schindl, G.: Injectivity and surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes. J. Math. Anal. Appl. 469(1), 136–168 (2019) Jiménez-Garrido, J., Sanz, J., Schindl, G.: Sectorial extensions, via Laplace transforms, in ultraholomorphic classes defined by weight functions. Results Math. 74, 27 (2019) Jiménez-Garrido, J., Sanz, J., Schindl, G.: Sectorial extensions for ultraholomorphic classes defined by weight functions. Math. Nachr. 293(11), 2140–2174 (2020) Jiménez-Garrido, J., Sanz, J., Schindl, G.: The surjectivity of the Borel mapping in the mixed setting for ultradifferentiable ramification spaces. Monatsh. Math. 191(3), 537–576 (2020) Jiménez-Garrido, J., Sanz, J., Schindl, G.: Ultraholomorphic extension theorems in the mixed setting. Banach J. Math. Anal. 14(4), 1630–1669 (2020) Komatsu, H.: Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973) Langenbruch, M.: Extension of ultradifferentiable functions. Manuscr. Math. 83(2), 123–143 (1994) Lastra, A., Malek, S., Sanz, J.: Continuous right inverses for the asymptotic Borel map in ultraholomorphic classes via a Laplace-type transform. J. Math. Anal. Appl. 396, 724–740 (2012) Lastra, A., Malek, S., Sanz, J.: Summability in general Carleman ultraholomorphic classes. J. Math. Anal. Appl. 430, 1175–1206 (2015) Mandelbrojt, S.: Séries Adhérentes, Régularisation des Suites, Applications. Gauthier-Villars, Paris (1952) Petzsche, H.-J.: On E. Borel’s theorem. Math. Ann 282(2), 299–313 (1988) Rainer, A.: On the extension of Whitney ultrajets of Beurling type. Results Math. 76, 36 (2021). https://doi.org/10.1007/s00025-021-01347-z Rainer, A., Schindl, G.: Composition in ultradifferentiable classes. Stud. Math. 224(2), 97–131 (2014) Rainer, A., Schindl, G.: Extension of Whitney jets of controlled growth. Math. Nachr. 290(14–15), 2356–2374 (2017) Rainer, A., Schindl, G.: On the extension of Whitney ultrajets. Stud. Math. 245(3), 255–287 (2019) Rainer, A., Schindl, G.: On the extension of Whitney ultrajets, II. Stud. Math. 250(3), 283–295 (2020) Ramis, J.-P.: Devissage Gevrey. In: Journees singulieres de Dijon, 12–16 juin 1978. Conferences organisees par l’équipe de topologie du Department de Mathématiques de l’Universite de Dijon, pp. 173–204 (English) (1978) Sanz, J.: Flat functions in Carleman ultraholomorphic classes via proximate orders. J. Math. Anal. Appl. 415, 623–643 (2014) Schindl, G.: Exponential laws for classes of Denjoy–Carleman-differentiable mappings (2014). PhD Thesis, Universität Wien, available online at http://othes.univie.ac.at/32755/1/2014-01-26_0304518.pdf Schindl, G.: Characterization of ultradifferentiable test functions defined by weight matrices in terms of their Fourier transform. Note Mat. 36(2), 1–35 (2016) Schindl, G.: On subadditivity-like conditions for associated weight functions. (2021). Available online at https://arxiv.org/pdf/2101.11411.pdf Schmets, J., Valdivia, M.: Extension maps in ultradifferentiable and ultraholomorphic function spaces. Stud. Math. 143(3), 221–250 (2000) Schmets, J., Valdivia, M.: On certain extension theorems in the mixed Borel setting. J. Math. Anal. Appl. 297, 384–403 (2003) Thilliez, V.: Division by flat ultradifferentiable functions and sectorial extensions. Results Math. 44, 169–188 (2003)