Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates

American Association for the Advancement of Science (AAAS) - Tập 290 Số 5499 - Trang 2126-2129 - 2000
Thomas Thurn‐Albrecht1, J. Schotter2, G. Kästle2, N. C. Emley2, T. Shibauchi3,4, L. Krusin‐Elbaum3, K.W. Guarini3, Charles T. Black3, Mark Tuominen2, Thomas P. Russell1
1Polymer Science and Engineering Department,
2Physics Department, University of Massachusetts, Amherst, MA 01003 USA
3IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA;
4Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Tóm tắt

We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 10 11 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

Từ khóa


Tài liệu tham khảo

Wong J., Scherer A., Todorovic M., Schultz S., J. Appl. Phys. 85, 5489 (1999).

Chou S.-Y., Proc. IEEE 85, 652 (1997).

10.1126/science.276.5317.1401

Wirth S., Molnar S. V., Field M., Awscholom D. D., J. Appl. Phys. 85, 5249 (1999).

Strikjers G. J., Dalderop J. H. J., Broeksteeg M. A. A., Swagten J. J. M., de Jonge W. J. M., J. Appl. Phys. 86, 5141 (1999).

Garcia J. M., et al., J. Appl. Phys. 85, 5480 (1999).

Hylton T. L., et al., Appl. Phys. Lett. 67, 1154 (1995).

10.1126/science.283.5401.512

Heremans J., Thrush C. M., Phys. Rev. B 59, 12579 (1999).

Fasol G., Science 275, 941 (1999).

10.1126/science.286.5444.1550

10.1039/a700027h

Huczko A., Appl. Phys. A Mater. Sci. Proc. 70, 365 (2000).

Routkevitch D., Bigioni T., Moskovits M., Xu J. M., J. Phys. Chem. 100, 14037 (1996).

Zeng H., et al., J. Appl. Phys. 87, 4718 (2000).

10.1126/science.268.5216.1466

Li A. P., Müller F., Birner A., Nielsch K., Gösele U., J. Appl. Phys. 84, 6023 (1998);

; Adv. Mater. 11 483 (1999).

Masuda H., Yamada H., Satoh M., Asoh H., Appl. Phys. Lett. 71, 2770 (1997).

10.1126/science.273.5277.931

10.1021/ma991896z

Thurn-Albrecht T., et al., Adv. Mater. 12, 787 (2000).

Amundson K., Helfand E., Quan X., Smith S. D., Macromolecules 26, 2698 (1993).

Amundson K., Helfand E., Quan X., Hudson S. D., Smith S. D., Macromolecules 27, 6559 (1994).

S. Kawai Symposium on Electrochemical Technology in Electronics (Electrochemical Society Pennington NJ 1987).

Whitney T. M., Jiang J. S., Searson P. C., Chien C. L., Science 261, 1316 (1993).

Braun P. V., Wiltzius P. W., Nature 402, 603 (1999).

The room-temperature electrolyte bath contained 20% by volume methanol Co salt (1.3 M CoSO 4 ·5H 2 O) and a buffering acid (0.7 M H 3 BO 3 ) at a pH of 3.7 prefiltered through a 0.2-μm filter. A standard three-electrode cell configuration (38) was used with a computer-controlled galvanostatic (constant current) electroplating circuit. The exposed gold on the template sample forms the working electrode and its half-cell potential is monitored with respect to a standard calomel reference electrode (SCE). The counterelectrode is a platinum foil with an 8-cm 2 surface area. A potential at least as negative as −0.52 V (the half-cell electrode potential against the SCE for Co 2+ + 2e − → Co) must be applied by the biasing circuit. Electrodeposition begins at the exposed gold at the base of each nanopore and grows upward as the pore is filled. Electrodeposition ensures continuity of the nanowire wires because otherwise growth cannot be sustained. Constant-current densities of 30 to 300 A/m 2 resulted in deposition rates of 1 to 10 nm/s. We controlled nanowire height by monitoring the integrated current.

SAXS experiments were performed with Ni-filtered Cu-Kα radiation from a Rigaku rotating anode operated at 8 kW with pinhole collimation at an angle of incidence of 45°. The scattering was recorded on a gas-filled area detector (Siemens Hi-Star). The electron densities (in e − /Å 3 ) are given in parentheses for PS (0.341) PMMA (0.386) water (0.335) water-methanol (0.319) and Co (2.456).

Hulteen J. C., Menon V. P., Martin C. R., J. Chem. Soc. Faraday Trans. 92, 4029 (1996).

See for example the discussion of LIGA in M. Madou Fundamentals of Microfabrication (CRC Press Boca Raton FL 1997).

Foss C. A., Hornyak G. L., Stockert J. A., Martin C. P., J. Phys. Chem. 98, 2963 (1994).

Weller D., Moser A., IEEE Trans. Magn. 35, 4423 (1999).

G. Bertotti Hysteresis in Magnetism (Academic Press New York 1998).

Garcia-Otera J., Porto M., Rivas J., Bunde A., Phys. Rev. Lett. 84, 167 (2000).

Hehn M., et al., Science 272, 1782 (1996).

Sun L., Searson D. C., Chien C. L., J. Appl. Phys. 74, 2803 (1999).

Fruchart O., Klaua M., Barthel J., Kirschner J., Phys. Rev. Lett. 83, 2769 (1999).

A. J. Bard L. R. Faulkner Electrochemical Methods (Wiley New York 1980).

We are grateful to A. Fadeev for helpful discussions concerning the choice of a suitable surfactant and C. Stafford for the preparation of the block copolymer. T.T.-A. acknowledges support by the Deutsche Forschungsgemeinschaft. Funded by the National Science Foundation “Partnership in Nanotechnology” grant the Materials Research Science and Engineering Center and the U.S. Department of Energy.