Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

Nature Communications - Tập 8 Số 1
Ling Chen1, Jia‐Wen Ye1, Hai‐Ping Wang1, Mei Pan1, Kai Wu1, Zhang‐Wen Wei1, Xingqiang Lü1, Yanan Fan1, Cheng‐Yong Su1
1MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

Tóm tắt

AbstractA convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal–organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

Từ khóa


Tài liệu tham khảo

Lee, S., Kapustin, E. A. & Yaghi, O. M. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353, 808–811 (2016).

Chen, Y.-Z. & Jiang, H.-L. Porphyrinic metal-organic framework catalyzed Heck-reaction: fluorescence ‘turn-on’ sensing of Cu(II) ion. Chem. Mater. 28, 6698–6704 (2016).

Lu, G. et al. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater. 23, 4449–4452 (2011).

Dong, M. J., Zhao, M., Ou, S., Zou, C. & Wu, C. D. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. Angew. Chem. Int. Ed. 53, 1575–1579 (2014).

Hu, Z. et al. Effective sensing of RDX via instant and selective detection of ketone vapors. Chem. Sci. 5, 4873–4877 (2014).

Shustova, N. B., McCarthy, B. D. & Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 133, 20126–20129 (2011).

Zhou, J. et al. A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 27, 7072–7077 (2015).

Xu, L.-J., Xu, G.-T. & Chen, Z.-N. Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers. Coord. Chem. Rev. 273–274, 47–62 (2014).

Cui, Y., Chen, B. & Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 273–274, 76–86 (2014).

Meyer, L. V., Schonfeld, F. & Muller-Buschbaum, K. Lanthanide based tuning of luminescence in MOFs and dense frameworks—from mono- and multimetal systems to sensors and films. Chem. Commun. 50, 8093–8108 (2014).

Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. Luminescent metal-organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009).

Zhai, Q. G., Bu, X., Mao, C., Zhao, X. & Feng, P. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. J. Am. Chem. Soc. 138, 2524–2527 (2016).

Schneemann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

Takashima, Y. et al. Molecular decoding using luminescence from an entangled porous framework. Nat. Commun. 2, 168 (2011).

Yanai, N. et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat. Mater. 10, 787–793 (2011).

Wang, B. et al. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138, 6204–6216 (2016).

Cui, Y. et al. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 49, 483–493 (2016).

Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

Liu, D., Lu, K., Poon, C. & Lin, W. Metal-organic frameworks as sensory materials and imaging agents. Inorg. Chem. 53, 1916–1924 (2014).

Hu, Z., Deibert, B. J. & Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014).

Ye, J.-W. et al. Encapsulating pyrene in a metal-organic zeolite for optical sensing of molecular oxygen. Chem. Mater. 27, 8255–8260 (2015).

Zhang, X., Wang, W., Hu, Z., Wang, G. & Uvdal, K. Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 284, 206–235 (2015).

Qi, X.-L. et al. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem. Sci. 2, 2214–2218 (2011).

Xiang, Z., Fang, C., Leng, S. & Cao, D. An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J. Mater. Chem. A 2, 7662–7665 (2014).

Lee, W. E., Jin, Y. J., Park, L. S. & Kwak, G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv. Mater. 24, 5604–5609 (2012).

Kessler, M. A., Gailer, J. G. & Wolfbeis, O. S. Optical sensor for online determination of solvent mixtures based on a fluorescent solvent polarity probe. Sens. Actuators B Chem. 3, 267–272 (1991).

Bai, M. & Seitz, W. R. A fiber optic sensor for water in organic-solvents based on polymer swelling. Talanta 41, 993–999 (1994).

Tsamis, E. D. & Avaritsiotis, J. N. Design of planar capacitive type sensor for ‘water content’ monitoring in a production line. Sens. Actuators A Phys. 118, 202–211 (2005).

Liang, Y. Y. Automation of Karl Fischer water titration by flow injection sampling. Anal. Chem. 62, 2504–2506 (1990).

Yu, Y. et al. Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single- crystal fashion. Chem. Commun. 50, 1444–1446 (2014).

Yu, Y., Ma, J.-P. & Dong, Y.-B. Luminescent humidity sensors based on porous Ln3+-MOFs. CrystEngComm 14, 7157–7160 (2012).

Ferrando-Soria, J. et al. Highly selective chemical sensing in a luminescent nanoporous magnet. Adv. Mater. 24, 5625–5629 (2012).

Douvali, A. et al. Turn-on luminescence sensing and real-time detection of traces of water in organic solvents by a flexible metal-organic framework. Angew. Chem. Int. Ed. 54, 1651–1656 (2015).

Park, S. et al. Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J. Am. Chem. Soc. 127, 10070–10074 (2005).

Park, S. et al. A white-light-emitting molecule: frustrated energy transfer between constituent emitting centers. J. Am. Chem. Soc. 131, 14043–14049 (2009).

Kwon, J. E. & Park, S. Y. Advanced organic optoelectronic materials: harnessing excited-atate intramolecular proton transfer (ESIPT) process. Adv. Mater. 23, 3615–3642 (2011).

Chen, L. et al. An efficient visible and near-infrared (NIR) emitting SmIII metal-organic framework (Sm-MOF) sensitized by excited-state intramolecular proton transfer (ESIPT) ligand. Chem. Asian J. 11, 1765–1769 (2016).

Chen, L. et al. Multi-mode white light emission in Zn (II) coordination polymer from excited-state intramolecular proton transfer (ESIPT) ligands. Eur. J. Inorg. Chem. 2016, 2676–2680 (2016).

Chen, L. et al. A naked eye colorimetric sensor for alcohol vapor discrimination and amplified spontaneous emission (ASE) from a highly fluorescent excited-state intramolecular proton transfer (ESIPT) molecule. J. Mater. Chem. C 4, 6962–6966 (2016).

Nandi, S. et al. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification. Sci. Adv. 1, e1500421 (2015).

Ren, X., Sun, T., Hu, J. & Wang, S. Synthesis optimization of the ultra-microporous [Ni3(HCOO)6] framework to improve its CH4/N2 separation selectivity. RSC Adv. 4, 42326–42336 (2014).

Zhou, H. L., Zhang, Y. B., Zhang, J. P. & Chen, X. M. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour. Nat. Commun. 6, 6917 (2015).

Bhattacharya, B., Halder, A., Paul, L., Chakrabarti, S. & Ghoshal, D. Eye-catching dual-fluorescent dynamic metal-organic framework senses traces of water: experimental findings and theoretical correlation. Chem. Eur. J. 22, 14998–15005 (2016).

Jayaramulu, K., Kanoo, P., George, S. J. & Maji, T. K. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chem. Commun. 46, 7906–7908 (2010).

Jung, H. S., Verwilst, P., Kim, W. Y. & Kim, J. S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 45, 1242–1256 (2016).

Suzuki, N. et al. A strap strategy for construction of an excited-state intramolecular proton transfer (ESIPT) system with dual fluorescence. Angew. Chem. Int. Ed. 53, 8231–8235 (2014).

Kim, T. I., Kang, H. J., Han, G., Chung, S. J. & Kim, Y. A highly selective fluorescent ESIPT probe for the dual specificity phosphatase MKP-6. Chem. Commun. 2009, 5895–5897 (2009).

Liu, B. et al. A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. Chem. Commun. 48, 2867–2869 (2012).

Shiraishi, Y., Matsunaga, Y., Hongpitakpong, P. & Hirai, T. A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sensing of Pb(II) in aqueous media. Chem. Commun. 49, 3434–3436 (2013).

Wang, Y., Hu, Y., Wu, T., Zhou, X. & Shao, Y. Triggered excited-state intramolecular proton transfer fluorescence for selective triplex DNA recognition. Anal. Chem. 87, 11620–11624 (2015).

Zhang, Y. et al. An ESIPT fluorescent dye based on HBI with high quantum yield and large Stokes shift for selective detection of Cys. J. Mater. Chem. B 2, 4159–4166 (2014).

Zhang, J. & Guo, W. A new fluorescent probe for gasotransmitter H2S: high sensitivity, excellent selectivity, and a significant fluorescence off-on response. Chem. Commun. 50, 4214–4217 (2014).

Kollman, P. A. & Allen, L. C. Theory of the hydrogen bond. Chem. Rev. 72, 283–303 (1972).

Nijem, N. et al. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework. J. Am. Chem. Soc. 135, 12615–12626 (2013).

Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

Mao, Y. et al. Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy 6, 10–18 (2014).

Stassen, I. et al. Solvent-free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors. CrystEngComm 15, 9308–9311 (2013).

Mishra, H., Misra, V., Mehata, M. S., Pant, T. C. & Tripathi, H. B. Fluorescence studies of salicylic acid doped poly(vinyl alcohol) film as a water/humidity sensor. J. Phys. Chem. A 108, 2346–2352 (2004).

Galindo, F. et al. Water/humidity and ammonia sensor, based on a polymer hydrogel matrix containing a fluorescent flavylium compound. J. Mater. Chem. 15, 2840–2847 (2005).