Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved potentiality of SIMS imaging in life sciences
Tóm tắt
Analytical imaging by secondary ion mass spectrometry (SIMS) provides images representative of the distribution of a specific ion within a sample surface. For the last fifteen years, concerted collaborative research to design a new ion microprobe with high technical standards in both mass and lateral resolution as well as in sensitivity has led to the CAMECA NanoSims 50, recently introduced onto the market. This instrument has decisive capabilities, which allow biological applications of SIMS microscopy at a level previously inaccessible. Its potential is illustrated here by the demonstration of the specific affinity of a melanoma marker for melanin. This finding is of great importance for the diagnosis and/or treatment of malignant melanoma, a tumour whose worldwide incidence is continuously growing. The characteristics of the instrument are briefly described and an example of application is given. This example deals with the intracellular localization of an iodo-benzamide used as a diagnostic tool for the scintigraphic detection of melanic cells (e.g. metastasis of malignant melanoma). B16 melanoma cells were injected intravenously to C57BL6/J1/co mice. Multiple B16 melanoma colonies developed in the lungs of treated animals within three weeks. Iodobenzamide was injected intravenously in tumour bearing mice six hours before sacrifice. Small pieces of lung were prepared for SIMS analysis. Mouse lung B16 melanoma colonies were observed with high lateral resolution. Cyanide ions gave "histological" images of the cell, representative of the distribution of C and N containing molecules (e.g. proteins, nucleic acids, melanin, etc.) while phosphorus ions are mainly produced by nucleic acids. Iodine was detected only in melanosomes, confirming the specific affinity of the drug for melanin. No drug was found in normal lung tissue. This study demonstrates the potential of SIMS microscopy, which allows the study of ultra structural distribution of a drug within a cell. On the basis of our observations, drug internalization via membrane sigma receptors can be excluded.
Tài liệu tham khảo
Castaing R, Slodzian G: Microanalyse par émission ionique secondaire. J Microsc 1962, 1: 395–410.
Galle P: Sur une nouvelle méthode d'analyse cellulaire utilisant le phénomène d'émission ionique secondaire. Ann Phys Biol Med 1970, 42: 83–94.
Morrison GH, Gay I, Chandra S: Ion microscopy in biology. Scanning Microsc Suppl 1994, 8: 359–70.
Pacholski ML, Winograd N: Imaging with mass spectrometry. Chem Rev 1999, 99: 2977–3005. 10.1021/cr980137w
Todd PJ, Schaaff TG, Chaurand P, Caprioli RM: Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 2001, 36: 355–69. 10.1002/jms.153
Slodzian G, Daigne B, Girard F, Boust F, Hillion F: Scanning secondary ion analytical microscopy with parallel detection. Biol Cell 1992, 74: 43–50.
Hillion F, Daigne B, Girard F, Slodzian G, Schuhmacher M: A new high performance SIMS instrument: The Cameca "Nanosims 50". Secondary Ion Mass Spectrometry SIMS IX 1993, 254–257.
Weinstock MA: Epidemiology of melanoma. Cancer Treat Res 1993, 65: 29–56.
Garbe C, Blum A: Epidemiology of cutaneous melanoma in Germany and worldwide. Skin Pharmacol Appl Skin Physiol 2001, 14: 280–90. 10.1159/000056358
Prichard RS, Hill AD, Skehan SJ, O'Higgins NJ: Positron emission tomography for staging and management of malignant melanoma. Br J Surg 2002, 89: 389–96. 10.1046/j.0007-1323.2002.02059.x
Michelot JM, Moreau MF, Labarre PG, Madelmont JC, Veyre AJ, Papon JM, Parry DF, Bonafous JF, Boire JY, Desplanches GG: Synthesis and evaluation of new iodine-125 radiopharmaceuticals as potential tracers for malignant melanoma. J Nucl Med 1991, 32: 1573–80.
John CS, Saga T, Kinuya S, Le N, Jeong JM, Paik CH, Reba RC, Varma VM, McAfee JG: An improved synthesis of [125I]N-(diethylaminoethyl)-4-iodobenzamide: a potential ligand for imaging malignant melanoma. Nucl Med Biol 1993, 20: 75–9. 10.1016/0969-8051(93)90138-K
Labarre P, Papon J, Moreau MF, Moins N, Veyre A, Madelmont JC: Evaluation in mice of some iodinated melanoma imaging agents using cryosectioning and multi-wire proportional counting. Eur J Nucl Med 1999, 26: 494–8. 10.1007/s002590050416
Moins N, Papon J, Seguin H, Gardette D, Moreau MF, Labarre P, Bayle M, Michelot J, Gramain JC, Madelmont JC, Veyre A: Synthesis, characterization and comparative biodistribution study of a new series of p-iodine-125 benzamides as potential melanoma imaging agents. Nucl Med Biol 2001, 28: 799–808. 10.1016/S0969-8051(01)00242-6
Labarre P, Papon J, Moreau MF, Moins N, Bayle M, Veyre A, Madelmont JC: Melanin affinity of N-(2-diethylaminoethyl)-4-iodobenzamide, an effective melanoma imaging agent. Melanoma Res 2002, 12: 115–21. 10.1097/00008390-200204000-00003
Moins N, D'Incan M, Bonafous J, Bacin F, Labarre P, Moreau MF, Mestas D, Noirault E, Chossat F, Berthommier E, Papon J, Bayle M, Souteyrand P, Madelmont JC, Veyre A: 123I-N-(2-diethylaminoethyl)-2-iodobenzamide: a potential imaging agent for cutaneous melanoma staging. Eur J Nucl Med Mol Imaging 2002, 29: 1478–84. 10.1007/s00259-002-0971-6
Chehade F, De Labriolle-Vaylet C, Michelot J, Moins N, Moreau MF, Hindie E, Papon J, Escaig F, Galle P, Veyre A: Distribution of I-BZA (N-2-diethylaminoethyl-4-iodobenzamide) in grafted melanoma and normal skin: a study by secondary ion mass spectroscopy. Cell Mol Biol (Noisy-le-grand) 2001, 47: 529–34.
John CS, Bowen WD, Saga T, Kinuya S, Vilner BJ, Baumgold J, Paik CH, Reba RC, Neumann RD, Varma VM: A malignant melanoma imaging agent: synthesis, characterization, in vitro binding and biodistribution of iodine-125-(2-piperidinylaminoethyl)4-iodobenzamide. J Nucl Med 1993, 34: 2169–75.
Caveliers V, Everaert H, Lahoutte T, Dierickx LO, John CS, Bossuyt A: Labelled sigma receptor ligands: can their role in neurology and oncology be extended? Eur J Nucl Med 2001, 28: 133–5. 10.1007/s002590000368