Ultra-Low Coverage Sequencing as the Most Accurate Library Quantification Method Prior to Target Sequencing
Tóm tắt
Accurate library quantification is very important during post-pooling captured target sequencing. There are a number of methods available to quantify libraries prior to sequencing, but no gold standard for the quantification of libraries exists. In this study, we compared common library quantification methods (Labchip, Qubit 3.0, qPCR with three primer sets) with ultra-low coverage sequencing (MiSeq with and without insert size correction). Cost, time and quantification accuracy were considered. We found that Qubit and MiSeq were better than qPCR and LabChip at predicting the final concentration. Also we revealed that MiSeq with insert size correction was the most accurate method for library quantification prior to target sequencing. This method allows for correction shifts in the ratio due to enrichment. Ultra-low coverage sequencing by Illumina MiSeq is the most accurate method for library quantification prior to pooling and post-pooling target enrichment.
Tài liệu tham khảo
Sham, P., Bader, J., Craig, I., O’Donovan, M., and Owen, M., DNA pooling: a tool for large-scale association studies, Nat. Rev. Genet., 2002, vol. 3, no. 11, pp. 862–871. https://doi.org/10.1038/nrg930
McGown, E., UV absorbance measurements of DNA in microplates, BioTechniques, 2000, vol. 28, no. 1, pp. 60–64. https://doi.org/10.2144/00281bm11
Ponti, G., Maccaferri, M., Manfredini, M., Kaleci, S., Mandrioli, M., Pellacani, G., Ozben, T., Depenni, R., Bianchi, G., Pirola, G., and Tomasi, A., The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients, Clin. Chim. Acta, 2018, vol. 479, pp. 14–19. https://doi.org/10.1016/j.cca.2018.01.007
Ahn, S., PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR, Nucleic Acids Res., 1996, vol. 24, no. 13, pp. 2623–2625.
Vitzthum, F., Geiger, G., Bisswanger, H., Brunner, H., and Bernhagen, J., A Quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system, Anal. Biochem., 1999, vol. 276, no. 1, pp. 59–64. https://doi.org/10.1006/abio.1999.4298
Panaro, N.J., Yuen, P.K., Sakazume, T., Fortina, P., Kricka, L.J., and Wilding P., Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer, Clin. Chem., 2000, vol. 46, no. 11, pp. 1851–1853.
Bunce, M., Oskam, C.L., and Allentoft, M.E., Quantitative real-time PCR in a DNA research, Methods Mol. Biol., 2012, vol. 840, pp. 121–132. https://doi.org/10.1007/978-1-61779-516-916
Mardis, E. and McCombie, R.W., Library quantification using SYBR Green quantitative polymerase chain reaction (qPCR), Cold Spring Harbor Protoc., 2017, no. 6. https://doi.org/10.1101/pdb.prot094714
Aigrain, L., Gu, Y., and Quail, M.A., Quantitation of next generation sequencing, library preparation protocol efficiencies using droplet digital PCR assays–a systematic comparison of DNA library preparation kits for Illumina sequencing, BMC Genomics, 2016, vol. 17, p. 458. https://doi.org/10.1186/s12864-016-2757-4
Haque, K.A., Pfeiffer, R.M., Beerman, M.B., Struewing, J.P., Chanock, S.J., and Bergen, A.W., Performance of high-throughput DNA quantification methods, BMC Biotechnol., 2003, vol. 3, p. 20. https://doi.org/10.1186/1472-6750-3-20
Nielsen, K., Mogensen, H.S., Hedman, J., Niederstätter, H., Parson, W., and Morling, N., Comparison of five DNA quantification methods, Forensic Sci. Int.: Genet., 2008, vol. 2, pp. 226–230. https://doi.org/10.1016/j.fsigen.2008.02.008
Buehler, B., Hogrefe, H.H., Scott, G., Ravi, H., Pabón-Peña, C., O’Brien, S., Formosa, R., and Happe, S., Rapid quantification of DNA libraries for next generation sequencing, Methods, 2010, vol. 50, no. 4, p. S15-8. https://doi.org/10.1016/j.ymeth.2010.01.004
Dang, J., Mendez, P., Lee, S., Kim, J.W., Yoon, J.H., Kim, T.W., Sailey, C.J., Jablons, D.M., and Kim, I.J., Development of a robust DNA quality and quantity assessment qPCR assay for targeted next-generation sequencing library preparation, Int. J. Oncol., 2016, vol. 49, no. 4, pp. 1755–1765. https://doi.org/10.3892/ijo.2016.3654
Hussing, C., Kampmann, M.L., Mogensen, H.S., Børsting, C., and Morling, N., Quantification of massively parallel sequencing libraries—a comparative study of eight methods, Sci. Rep., 2018, vol. 8, no. 1, p. 1110. https://doi.org/10.1038/s41598-018-19574-w
Meyer, M., Briggs, A.W., Maricic, T., Höber, B., Höffner, B., Krause, J., Weihmann, A., Pääbo, S., and Hofreiter, M., From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing, Nucleic Acids Res., 2008, vol. 36, no. 1, p. e5. https://doi.org/10.1093/nar/gkm1095
Robin, J.D., Ludlow, A.T., La Ranger, R., Wright, W.E., and Shay, J.W., Comparison of DNA quantification methods for next generation sequencing, Sci. Rep., 2016, vol. 6, p. 24 067. https://doi.org/10.1038/srep24067
Krasnenko, A., Tsukanov, K., Stetsenko, I., Klimchuk, O., Plotnikov, N., Surkova, E., and Ilinsky, V., Effect of DNA insert length on whole-exome sequencing enrichment efficiency: an observational study, Adv. Genomics Genet., 2018, vol. 8, pp. 13–15. https://doi.org/10.2147/AGG.S162531
Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M., Comparison of next-generation sequencing systems, J. Biomed. Biotechnol., 2012, vol. 2012, p. 251 364. https://doi.org/10.1155/2012/251364
Head, S.R., Komori, H.K., LaMere, S.A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D.R., and Ordoukhanian, P., Library construction for next-generation sequencing: overviews and challenges, Biotechniques, 2014, vol. 56, no. 2, pp. 61–64, 66, 68. https://doi.org/10.2144/000114133
Brzobohatá, K., Drozdová, E., Smutný, J., Zeman, T., and Beňuš, R., Comparison of suitability of the most common ancient DNA quantification methods, Genet. Test. Mol. Biomarkers, 2017, vol. 21, no. 4, pp. 265–271. https://doi.org/10.1089/gtmb.2016.0197
Hussing, C., Kampmann, M.L., Mogensen, H.S., Børsting, C., and Morling, N., Comparison of techniques for quantification of next-generation sequencing libraries, Forensic Sci. Int.: Genet. Suppl. Ser., 2015, vol. 5, pp. e276–e278. https://doi.org/10.1016/j.fsigss.2015.09.110
Katsuoka, F., Yokozawa, J., Tsuda, K., Ito, S., Pan, X., Nagasaki, M., Yasuda, J., and Yamamoto, M., An efficient quantitation method of next-generation sequencing libraries by using MiSeq sequencer, Anal. Biochem., 2014, vol. 466, pp. 27–29. https://doi.org/10.1016/j.ab.2014.08.015
Laurie, M.T., Bertout, J.A., Taylor, S.D., Burton, J.N., Shendure, J.A., and Bielas, J.H., Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries, Biotechniques, 2013, vol. 55, no. 2, pp. 61–67. https://doi.org/10.2144/000114063
Nakayama, Y., Yamaguchi, H., Einaga, N., and Esumi, M., Pitfalls of DNA quantification using DNA-binding fluorescent dyes and suggested solutions, PLoS One, 2016, vol. 11, no. 3, p. e0150528. https://doi.org/10.1371/journal.pone.0150528
White, R.A. III, Blainey, P.C., Fan, H.C., and Quake, S.R., Digital PCR provides sensitive and absolute calibration for high throughput sequencing, BMC Genomics, 2009, vol. 10, p. 116. https://doi.org/10.1186/1471-2164-10-116