Ultra-Low Coverage Sequencing as the Most Accurate Library Quantification Method Prior to Target Sequencing

Allerton Press - Tập 34 - Trang 118-123 - 2019
A. Yu. Krasnenko1,2,3, I. F. Stetsenko1,3, O. I. Klimchuk1, V. V. Demkin4, A. S. Rakitko1,3,5, E. I. Surkova1, O. S. Druzhilovskaya3
1Genotek Ltd., Moscow, Russia
2Pirogov Russian National Research Medical University, Moscow, Russia
3Vavilov Institute of General Genetics, Moscow, Russia
4Institute of Molecular Genetics, Moscow, Russia
5Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Tóm tắt

Accurate library quantification is very important during post-pooling captured target sequencing. There are a number of methods available to quantify libraries prior to sequencing, but no gold standard for the quantification of libraries exists. In this study, we compared common library quantification methods (Labchip, Qubit 3.0, qPCR with three primer sets) with ultra-low coverage sequencing (MiSeq with and without insert size correction). Cost, time and quantification accuracy were considered. We found that Qubit and MiSeq were better than qPCR and LabChip at predicting the final concentration. Also we revealed that MiSeq with insert size correction was the most accurate method for library quantification prior to target sequencing. This method allows for correction shifts in the ratio due to enrichment. Ultra-low coverage sequencing by Illumina MiSeq is the most accurate method for library quantification prior to pooling and post-pooling target enrichment.

Tài liệu tham khảo

Sham, P., Bader, J., Craig, I., O’Donovan, M., and Owen, M., DNA pooling: a tool for large-scale association studies, Nat. Rev. Genet., 2002, vol. 3, no. 11, pp. 862–871. https://doi.org/10.1038/nrg930 McGown, E., UV absorbance measurements of DNA in microplates, BioTechniques, 2000, vol. 28, no. 1, pp. 60–64. https://doi.org/10.2144/00281bm11 Ponti, G., Maccaferri, M., Manfredini, M., Kaleci, S., Mandrioli, M., Pellacani, G., Ozben, T., Depenni, R., Bianchi, G., Pirola, G., and Tomasi, A., The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients, Clin. Chim. Acta, 2018, vol. 479, pp. 14–19. https://doi.org/10.1016/j.cca.2018.01.007 Ahn, S., PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR, Nucleic Acids Res., 1996, vol. 24, no. 13, pp. 2623–2625. Vitzthum, F., Geiger, G., Bisswanger, H., Brunner, H., and Bernhagen, J., A Quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system, Anal. Biochem., 1999, vol. 276, no. 1, pp. 59–64. https://doi.org/10.1006/abio.1999.4298 Panaro, N.J., Yuen, P.K., Sakazume, T., Fortina, P., Kricka, L.J., and Wilding P., Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer, Clin. Chem., 2000, vol. 46, no. 11, pp. 1851–1853. Bunce, M., Oskam, C.L., and Allentoft, M.E., Quantitative real-time PCR in a DNA research, Methods Mol. Biol., 2012, vol. 840, pp. 121–132. https://doi.org/10.1007/978-1-61779-516-916 Mardis, E. and McCombie, R.W., Library quantification using SYBR Green quantitative polymerase chain reaction (qPCR), Cold Spring Harbor Protoc., 2017, no. 6. https://doi.org/10.1101/pdb.prot094714 Aigrain, L., Gu, Y., and Quail, M.A., Quantitation of next generation sequencing, library preparation protocol efficiencies using droplet digital PCR assays–a systematic comparison of DNA library preparation kits for Illumina sequencing, BMC Genomics, 2016, vol. 17, p. 458. https://doi.org/10.1186/s12864-016-2757-4 Haque, K.A., Pfeiffer, R.M., Beerman, M.B., Struewing, J.P., Chanock, S.J., and Bergen, A.W., Performance of high-throughput DNA quantification methods, BMC Biotechnol., 2003, vol. 3, p. 20. https://doi.org/10.1186/1472-6750-3-20 Nielsen, K., Mogensen, H.S., Hedman, J., Niederstätter, H., Parson, W., and Morling, N., Comparison of five DNA quantification methods, Forensic Sci. Int.: Genet., 2008, vol. 2, pp. 226–230. https://doi.org/10.1016/j.fsigen.2008.02.008 Buehler, B., Hogrefe, H.H., Scott, G., Ravi, H., Pabón-Peña, C., O’Brien, S., Formosa, R., and Happe, S., Rapid quantification of DNA libraries for next generation sequencing, Methods, 2010, vol. 50, no. 4, p. S15-8. https://doi.org/10.1016/j.ymeth.2010.01.004 Dang, J., Mendez, P., Lee, S., Kim, J.W., Yoon, J.H., Kim, T.W., Sailey, C.J., Jablons, D.M., and Kim, I.J., Development of a robust DNA quality and quantity assessment qPCR assay for targeted next-generation sequencing library preparation, Int. J. Oncol., 2016, vol. 49, no. 4, pp. 1755–1765. https://doi.org/10.3892/ijo.2016.3654 Hussing, C., Kampmann, M.L., Mogensen, H.S., Børsting, C., and Morling, N., Quantification of massively parallel sequencing libraries—a comparative study of eight methods, Sci. Rep., 2018, vol. 8, no. 1, p. 1110. https://doi.org/10.1038/s41598-018-19574-w Meyer, M., Briggs, A.W., Maricic, T., Höber, B., Höffner, B., Krause, J., Weihmann, A., Pääbo, S., and Hofreiter, M., From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing, Nucleic Acids Res., 2008, vol. 36, no. 1, p. e5. https://doi.org/10.1093/nar/gkm1095 Robin, J.D., Ludlow, A.T., La Ranger, R., Wright, W.E., and Shay, J.W., Comparison of DNA quantification methods for next generation sequencing, Sci. Rep., 2016, vol. 6, p. 24 067. https://doi.org/10.1038/srep24067 Krasnenko, A., Tsukanov, K., Stetsenko, I., Klimchuk, O., Plotnikov, N., Surkova, E., and Ilinsky, V., Effect of DNA insert length on whole-exome sequencing enrichment efficiency: an observational study, Adv. Genomics Genet., 2018, vol. 8, pp. 13–15. https://doi.org/10.2147/AGG.S162531 Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M., Comparison of next-generation sequencing systems, J. Biomed. Biotechnol., 2012, vol. 2012, p. 251 364. https://doi.org/10.1155/2012/251364 Head, S.R., Komori, H.K., LaMere, S.A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D.R., and Ordoukhanian, P., Library construction for next-generation sequencing: overviews and challenges, Biotechniques, 2014, vol. 56, no. 2, pp. 61–64, 66, 68. https://doi.org/10.2144/000114133 Brzobohatá, K., Drozdová, E., Smutný, J., Zeman, T., and Beňuš, R., Comparison of suitability of the most common ancient DNA quantification methods, Genet. Test. Mol. Biomarkers, 2017, vol. 21, no. 4, pp. 265–271. https://doi.org/10.1089/gtmb.2016.0197 Hussing, C., Kampmann, M.L., Mogensen, H.S., Børsting, C., and Morling, N., Comparison of techniques for quantification of next-generation sequencing libraries, Forensic Sci. Int.: Genet. Suppl. Ser., 2015, vol. 5, pp. e276–e278. https://doi.org/10.1016/j.fsigss.2015.09.110 Katsuoka, F., Yokozawa, J., Tsuda, K., Ito, S., Pan, X., Nagasaki, M., Yasuda, J., and Yamamoto, M., An efficient quantitation method of next-generation sequencing libraries by using MiSeq sequencer, Anal. Biochem., 2014, vol. 466, pp. 27–29. https://doi.org/10.1016/j.ab.2014.08.015 Laurie, M.T., Bertout, J.A., Taylor, S.D., Burton, J.N., Shendure, J.A., and Bielas, J.H., Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries, Biotechniques, 2013, vol. 55, no. 2, pp. 61–67. https://doi.org/10.2144/000114063 Nakayama, Y., Yamaguchi, H., Einaga, N., and Esumi, M., Pitfalls of DNA quantification using DNA-binding fluorescent dyes and suggested solutions, PLoS One, 2016, vol. 11, no. 3, p. e0150528. https://doi.org/10.1371/journal.pone.0150528 White, R.A. III, Blainey, P.C., Fan, H.C., and Quake, S.R., Digital PCR provides sensitive and absolute calibration for high throughput sequencing, BMC Genomics, 2009, vol. 10, p. 116. https://doi.org/10.1186/1471-2164-10-116