UTCI-Fiala multi-node model of human heat transfer and temperature regulation

International Journal of Biometeorology - Tập 56 Số 3 - Trang 429-441 - 2012
Dusan Fiala1, George Havenith2, Peter Bröde3, Bernhard Kampmann4, Gerd Jendritzky5
1ErgonSim – Comfort Energy Efficiency, Holderbuschweg 47, 70563, Stuttgart, Germany
2Environmental Ergonomics Research Centre, Loughborough University, Loughborough, UK
3Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
4Division of Applied Physiology, Occupational Medicine and Infectiology, Department of Safety Engineering, Bergische Universität Wuppertal, Wuppertal, Germany
5Meteorological Institute, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aschoff VJ, Wever R (1958) Kern und Schale im Wärmehaushalt des Menschen. Naturwissenschaften 45:477–485

ASHRAE (2004) ANSI/ASHRAE standard 55: thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc, Atlanta

Azer NZ, Hsu S (1977) The prediction of thermal sensation from a simple model of human physiological regulatory response. ASHRAE Trans 83:88–102

Burton AC (1937) The application of the theory of heat flow to the study of energy metabolism. J Nutrition:487–533

Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2011a) Deriving the Operational Procedure for the Universal Thermal Climate Index UTCI. Int J Biometeorol

Bröde P, Krüger EL, Rossi FA, Fiala D (2011b) Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI – A case study in southern Brazil. Int J Biometeorol

Crawshaw LI, Nadel ER, Stolwijk JAJ, Stamford BA (1975) Effect of local cooling on sweating rate and cold sensation. Pflügers Arch 354:19–27

Fanger PO (1973) Thermal comfort - analysis and applications in environmental engineering. McGraw-Hill, New York

Fiala D (1998) Dynamic simulation of human heat transfer and thermal comfort. PhD thesis, De Montfort University, UK

Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

Fiala D, Lomas KJ, Stohrer M (2003) First principles modelling of thermal sensation responses in steady state and transient boundary conditions. ASHRAE Trans 109(1):179–186

Fiala D, Bunzl A, Lomas KJ, Cropper PC, Schlenz D (2004) A new simulation system for predicting human thermal and perceptual responses in vehicles. In: Schlenz D (ed) PKW-Klimatisierung III: Klimakonzepte, Regelungsstrategien und Entwicklungsmethoden. Expert Verlag Renningen, Haus der Technik Fachbuch Band 27: 147–162

Fiala D, Psikuta A, Jendritzky G, Paulke S, Nelson DA, van Marken Lichtenbelt WD, Frijns AJH (2010) Physiological modeling for technical, clinical and research applications. Front Biosci S2:939–968

Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

Gordon RG, Roemer RB, Horvath SM (1976) A mathematical model of the human temperature regulatory system - transient cold exposure response. IEEE Trans Biomed Eng 23:434–444

Havenith G, Fiala D, Blazejczyk K, Richards M, Bröde P, Holmér I, Rintamäki H, Benshabat Y, Jendritzky G (2011) The UTCI-Clothing Model. Int J Biometeorol

Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699

ISO 7730 (2005) Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organisation for Standardisation, Geneve

Jones BW, Ogawa Y (1992) Transient interaction between the human and the thermal environment. ASHRAE Trans 98:189–196

Kampmann B, Bröde P, Fiala D (2011) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol

Kubaha K, Fiala D, Toftum J, Taki AH (2004) Human projected area factors for detailed direct and diffuse solar radiation analysis. Int J Biometeorol 49:113–129

Kubaha K (2005) Asymmetric radiation and human thermal comfort: PhD thesis, De Montfort University, UK

McCullough EA, Jones BW, Huck J (1985) A comprehensive data base for estimating clothing insulation. ASHRAE Trans 92:29–47

McCullough EA, Jones BW, Tamura T (1989) A data base for determining the evaporative resistance of clothing. ASHRAE Trans 95:316–328

Nadel ER, Bullard RW, Stolwijk JAJ (1971) Importance of skin temperature in the regulation of sweating. J Appl Physiol 31:80–87

Nadel ER, Mitchell JW, Stolwijk JAJ (1973) Differential thermal sensitivity in the human skin. Pflügers Arch 340:71–76

Oke TR (1987) Boundary layer climates. Routledge, London

Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122

Psikuta A Fiala D, Laschewski G, Jendritzky G, Richards M, Blazejczyk K, Mekjavic I, Rintamäki H, Havenith G, de Dear R (2011) Evaluation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol

Richards M, Fiala D (2004) Modelling fire-fighter responses to exercise and asymmetric IR-radiation using a dynamic multi-mode model of human physiology and results from the Sweating Agile thermal Manikin (SAM). Eur J Appl Physiol 92:649–653

Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report, NASA CR-1855, Washington DC

Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energ Buildings 34:637–646

Wang X-L (1990) Convective heat losses from segments of the human body. Climate Buildings 3:8–14

Weinbaum S, Jiji LM, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer - part I: anatomical foundation and model conceptualization. ASME J Biomech Eng 106:321–330

Wissler EH (1985) Mathematical simulation of human thermal behavior using whole body models. In: Shitzer A, Eberhart RC (eds) Heat transfer in medicine and biology – analysis and applications. Plenum, New York, pp 325–373