U–Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China

Geological Journal - Tập 52 Số 6 - Trang 938-954 - 2017
Jiang Zhu1,2, Lian‐Xun Wang3, Sanguo Peng1,2, Lianhong Peng1,2, Chang-Xiong Wu4, Xiaofei Qiu1,2
1Research Center of Granitic Diagenesis and Mineralization China Geological Survey Wuhan Hubei China
2Wuhan Center China Geological Survey Wuhan Hubei China
3School of Earth Sciences China University of Geosciences Wuhan Hubei China
4Sixth Geological Brigade Hubei Geological Bureau Xiaogan Hubei China

Tóm tắt

The Miaoya syenite and carbonatite complex is located in the southern margin of the South Qinling belt, central China. LA‐ICP‐MS zircon U–Pb dating reveals that the syenite and carbonatite have crystallization ages of 445.2 ± 2.6 Ma (MSWD = 0.66) and 434.3 ± 3.2 Ma (MSWD = 1.08), respectively. Both syenite and carbonatite display low ISr values (0.7004 to 0.7053) and depleted εNd(t) values of +1.1 to +5.5, with one‐stage Nd model ages of 0.65 to 0.94 Ga. Their zircon εHf(t) values are also similarly positive (+3.1 to +8.9), and one‐stage Hf model ages range from 0.71 to 0.92 Ga. Whole‐rock geochemistry suggests that the syenite belongs to the shoshonitic series and both syenite and carbonatite show identical REE and trace element patterns. The coeval intrusive ages, similar geochemical and Sr–Nd–Hf isotopic compositions suggest that the Miaoya carbonatite and associated syenite are genetically related to each other. We consider that the carbonatite could be a final product by protracted fractionation of a CO2‐rich alkaline melt. The depleted εNd(t) and zircon εHf(t) isotopes also indicate that the associated syenite and carbonatite could be originated from a mantle‐derived magma. The sources are likely composed of dominated HIMU mantle and minor EMI mantle. We propose that the Silurian Miaoya Complex was formed in the extensional rifting setting, associated with the mantle upwelling. Copyright © 2016 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1130/0091-7613(1987)15<99:NASICO>2.0.CO;2

10.1144/gsjgs.150.4.0637

10.1093/petrology/37.6.1321

10.1093/petrology/42.10.1927

10.1007/s004100050278

10.1093/petrology/egq081

10.1016/j.precamres.2015.08.016

10.1016/j.jseaes.2011.03.002

10.1146/annurev.earth.35.031306.140146

10.1007/BF00371385

10.1016/j.chemgeo.2008.12.030

10.1016/S0012-821X(98)00152-6

10.1093/petrology/egh069

10.1093/petroj/39.11-12.1895

10.1016/0012-821X(86)90038-5

10.1039/c2ja30078h

10.1016/0040-1951(93)90035-I

Huang Y., 1992, Early Paleozoic bimodal volcanism of northern Dabashan, Acta Petrologica Sinica, 8, 253

10.1016/j.chemgeo.2004.06.017

10.1016/S0040-1951(97)00093-0

Kjarsgaard B.A., 1989, Carbonatites: Genesis and Evolution, 388

10.1038/199801a0

10.2475/ajs.264.3.234

10.2747/0020-6814.50.7.650

Lai S.C., 2003, Geochemistry and regional distribution of ophiolites and associated volcanics in Mianlue suture, Qinling‐Dabie Mountain, Science China‐Earth Sciences, 33, 1174

10.1080/00206819409465489

Li S., 1980, Geochemical features and petrogenesis of Miaoya carbonatites, Geochimica, 4, 345

10.1007/s11430-015-5110-x

10.1016/S0301-9268(02)00222-X

10.1007/s11434-008-0269-6

10.1016/S0009-2541(02)00142-0

10.2113/gsecongeo.94.3.325

10.1093/petrology/egp082

10.1016/j.chemgeo.2008.08.004

Ludwig K.R.2003.ISOPLOT 3.00: a geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Berkeley CA 39.

10.1360/03yd0487

10.1016/0016-7037(77)90202-2

10.1016/S0040-1951(00)00106-2

10.1016/j.jafrearsci.2014.08.010

10.1016/0012-8252(94)90029-9

10.1016/S0024-4937(00)00033-5

10.2113/gscanmin.43.6.2049

10.1016/j.oregeorev.2014.12.017

10.1007/BF00384745

Qiao G.S., 1988, Normalization of isotopic dilution analysis, Science China‐Mathematics, 31, 1263

10.1016/j.chemgeo.2015.02.028

10.1007/s00410-009-0478-2

10.1016/j.lithos.2004.09.017

10.1144/GSL.SP.1989.042.01.19

10.1016/0012-821X(94)90149-X

10.1016/S0024-4937(00)00072-4

Treiman A.H., 1989, Carbonatites: Genesis and Evolution, 89

Veksler I.V., 1998, Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis, Journal of Petrology, 39, 2015, 10.1093/petroj/39.11-12.2015

10.1016/j.gca.2011.11.035

10.1038/335343a0

Wang L.X., 2014, Apatite from the Kaiserstuhl Volcanic Complex, Germany: new constraints on the relationship between carbonatite and associated silicate rocks, European Journal of Mineralogy, 26, 397, 10.1127/0935-1221/2014/0026-2377

10.1093/petrology/12.2.357

10.1007/s00410-006-0068-5

10.1111/j.1751-908X.1995.tb00147.x

10.1016/0016-7037(86)90408-4

10.1016/j.chemgeo.2004.04.026

10.3749/canmin.46.4.741

Wu M., 2011, A preliminary study on genesis of REE deposit in Miaoya, Acta Mineralogica Sinica, 31, 478

10.1016/j.gr.2012.09.007

10.1016/j.lithos.2008.03.002

10.1016/j.lithos.2010.04.003

10.1016/j.gca.2014.03.041

10.1016/j.lithos.2015.03.024

10.1111/j.1755-6724.1999.tb00844.x

Xu X.Y., 2001, Geochemical characteristics and petrogenesis of the early Paleozoic alkali lamprophyre complex from Langao county, Acta Geoscientia Sinica, 22, 55

10.1007/s11430-007-0088-7

Zhang G.W., 2004, Mianlue paleo‐suture on the southern margin of the Central Orogenic Sytem in Qinling‐Dabie—with a discussion of the assembly of the main part of the continent of China, Geological Bulletin of China, 23, 846

Zhang G.W., 2001, Qinling Orogenic Belt and Continental Dynamics, 1

10.1016/0016-7037(95)00050-A

10.1016/j.lithos.2011.11.020

10.1146/annurev.ea.14.050186.002425