Tyrosine Residues 232 and 401 Play a Critical Role in the Binding of the Cofactor FAD of Acyl-coA Oxidase

Shuai Deng1, Ping Li1, Yiping Wang1, Jia Zeng1
1School of Life Science, Hunan University of Science and Technology, Xiangtan, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lazarow, P. B., & Duve, C. D. (1976). A fatty acyl-coA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proceedings of the National Academy of Science of the United States of America, 73(6), 2043–2046. https://doi.org/10.1073/pnas.73.6.2043

Bronfman, M., Inestrosa, N. C., & Leighton, F. (1979). Fatty acid oxidation by human liver peroxisomes. Biochemical and Biophysical Research Communications, 88(3), 1030–1036. https://doi.org/10.1016/0006-291X(79)91512-2

Setoyama, C., Tamaoki, H., Nishina, Y., Shiga, K. O., & Miura, R. (1995). Functional expression of 2 forms of rat acyl-coA oxidase and their substrate specificities. Biochemical and Biophysical Research Communications, 217(2), 482–487. https://doi.org/10.1006/bbrc.1995.2801

Fan, C. Y., Pan, J., Usuda, N., Yeldandi, A. V., Rao, M. S., & Reddy, J. K. (1998). Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-coA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. The Journal of Biological Chemistry, 273(25), 15639–15645. https://doi.org/10.1074/jbc.273.25.15639

Su, H. M., Moser, A. B., Moser, H. W., & Watkins, P. A. (2001). Peroxisomal straight-chain acyl-coA oxidase and d-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. The Journal of Biological Chemistry, 276(41), 38115–38120. https://doi.org/10.1074/jbc.M106326200

Suzuki, Y., Iai, M., Kamei, A., Tanabe, Y., Chida, S., Yamaguchi, S., & Kondo, N. (2002). Peroxisomal acyl coA oxidase deficiency. The Journal of Pediatrics, 140(1), 128–130. https://doi.org/10.1067/mpd.2002.120511

Rylott, E. L., Rogers, C. A., Gilday, A. D., Edgell, T., Larson, T. R., & Graham, I. A. (2003). Arabidopsis mutants in short- and medium-chain acyl-coA oxidase activities accumulate acyl-coAs and reveal that fatty acid beta-oxidation is essential for embryo development. The Journal of Biological Chemistry, 278(24), 21370–21377. https://doi.org/10.1074/jbc.M300826200

Zeng, J., Wu, L., Zhang, X., Liu, Y., Deng, G., & Li, D. (2008). Cheminform abstract: oct-2-en-4-ynoyl-coA as a specific inhibitor of acyl-coA oxidase. Organic Letters, 10(19), 4287–4290. https://doi.org/10.1021/ol801571n

Zeng, J., Deng, S., Wang, Y., Li, P., Tang, L. and Pang, Y. (2017) Specific inhibition of acyl-coA oxidase-1 by an acetylenic acid improves hepatic lipid and reactive oxygen species (ros) metabolism in rats fed a high-fat diet. J. Biol. Chem. 292.

Nakajima, Y., Miyahara, I., Hirotsu, K., Nishina, Y., Shiga, K., Setoyama, C., & Miura, R. (2002). Three-dimensional structure of the flavoenzyme acyl-coA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-coA dehydrogenase. Journal of Biochemistry, 131(3), 365–374. https://doi.org/10.1093/oxfordjournals.jbchem.a003111

Zeng, J., & Li, D. (2004). Expression and purification of his-tagged rat peroxisomal acyl-coA oxidase wild-type and E421 mutant proteins. Protein Expres Purif., 38(1), 153–160. https://doi.org/10.1016/j.pep.2004.08.013

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Parry, R. J., & Li, W. (1997). An NADPH: FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens cloning, analysis, and overexpression. The Journal of Biological Chemistry, 272(37), 23303–23311. https://doi.org/10.1074/jbc.272.37.23303

Massey, V., & Curti, B. (1966). A new method of preparation of D-amino acid oxidase apoprotein and a conformational change after its combination with flavin adenine dinucleotide. The Journal of Biological Chemistry, 241(14), 3417–3423.

Saijo, T., Kim, J. J. P., Kuroda, Y., & Tanaka, K. (1998). The roles of threonine-136 and glutamate-137 of human medium chain acyl-coA dehydrogenase in FAD binding and peptide folding using site-directed mutagenesis: creation of an FAD-dependent mutant, T136D. Archives of Biochemistry and Biophysics, 358(1), 49–57. https://doi.org/10.1006/abbi.1998.0844

Cheong, T. K., & Oriel, P. J. (2000). Cloning and expression of the limonene hydroxylase of Bacillus stearothermophilus BR388 and utilization in two-phase limonene conversions. Applied Biochemistry and Biotechnology, 84(1), 903–915.

Piubelli, L., Caldinelli, L., Molla, G., Pilone, M. S., & Pollegioni, L. (2002). Conversion of the dimeric D-amino acid oxidase from Rhodotorula gracilis to a monomeric form. A rational mutagenesis approach. FEBS Letters, 526(1–3), 43–48. https://doi.org/10.1016/S0014-5793(02)03111-3

Pollegioni, L., Piubelli, L., Sacchi, S., Pilone, M. S., & Molla, G. (2007). Physiological functions of D-amino acid oxidases: from yeast to humans. Cellular and Molecular Life Sciences, 64(11), 1373–1394. https://doi.org/10.1007/s00018-007-6558-4

Ames, B. N., Elson-Schwab, I., & Silver, E. A. (2002). High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased km): relevance to genetic disease and polymorphisms. The American Journal of Clinical Nutrition, 75(4), 616–658.

Brautigam, C. A., Chuang, J. L., Tomchick, D. R., Machius, M., & Chuang, D. T. (2005). Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. Journal of Molecular Biology, 350(3), 543–552. https://doi.org/10.1016/j.jmb.2005.05.014