Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China

Biogeosciences - Tập 11 Số 19 - Trang 5323-5333
Hongtao Chen1,2, Wenfang Lu1,2, Ge Yan1,2, Shengchang Yang2, Guanghui Lin1,3
1Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
2Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
3Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing 100084, China

Tóm tắt

Abstract. Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26–50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43–131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.

Từ khóa


Tài liệu tham khảo

Alongi, D. M.: Present state and future of the world's mangrove forests, Environ. Conserv., 29, 331–349, https://doi.org/10.1017/s0376892902000231, 2002.

Alongi, D. M.: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change, Estuar. Coast. Shelf Sci., 76, 1–13, https://doi.org/10.1016/j.ecss.2007.08.024, 2008.

Alongi, D. M.: The energetics of mangrove forests, Springer, Dordrecht, 2009.

Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark, K. L., Davis, K. J., and Desai, A. R.: Ecosystem carbon dioxide fluxes after disturbance in forests of North America, J. Geophys. Res., 115, G00K02, https://doi.org/10.1029/2010jg001390, 2010.

Baldocchi, D.: "Breathing" of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, https://doi.org/10.1071/bt07151, 2008.

Barr, J. G., Engel, V., Fuentes, J. D., Zieman, J. C., O'Halloran, T. L., Smith III, T. J., and Anderson, G. H.: Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park, J. Geophys. Res., 115, G02020, https://doi.org/10.1029/2009jg001186, 2010.

Barr, J. G., Engel, V., Smith, T. J., and Fuentes, J. D.: Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades, Agr. Forest Meteorol., 153, 54–66, https://doi.org/10.1016/j.agrformet.2011.07.022, 2012.

Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., and Middelburg, J. J.: Mangrove production and carbon sinks: a revision of global budget estimates, Glob. Biogeochem. Cycl., 22, GB2013, https://doi.org/10.1029/2007gb003052, 2008.

Burba, G. G., Anderson, D. J., Xu, L., and McDermitt, D. K.: Correcting apparent off-season CO2 uptake due to surface heating of an open path gas analyzer: progress report of an ongoing study, 27th Confercence on Agricultural and Forest Meteorology, P4.4, San Diego, California, 24 May 2006.

Chen, L. Z., Wang, W. Q., Zhang, Y. H. and Lin, G. H.: Recent progresses in mangrove conservation, restoration and research in China, J. Plant Ecol., 2, 45–54, https://doi.org/10.1093/jpe/rtp009, 2009

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., and Kanninen, M.: Mangroves among the most carbon-rich forests in the tropics, Nat. Geosci., 4, 293–297, https://doi.org/10.1038/ngeo1123, 2011.

Dietze, M. and Clark, J. S.: Changing the gap dynamics paradigm: vegetative regeneration control on forest response to disturbance, Ecol. Monogr., 78, 331–347, https://doi.org/10.1890/07-0271.1, 2007.

Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., and Field, C. D.: A world without mangroves?, Science, 317, 41–42, https://doi.org/10.1126/science.317.5834.41b, 2007.

Emanuel, K.: Environmental factors affecting tropical cyclone power dissipation, J. Climate, 20, 5497–5509, https://doi.org/10.1175/2007jcli1571.1, 2007.

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., and Dolman, H.: Gap filling strategies for long term energy flux data sets, Agr. Forest Meteorol., 107, 71–77, https://doi.org/10.1016/S0168-1923(00)00235-5, 2001.

Gilbert, A. J., and Janssen, R.: Use of environmental functions to communicate the values of a mangrove ecosystem under different management regimes, Ecol. Econ., 25, 323–346, https://doi.org/10.1016/s0921-8009(97)00064-5, 1998.

Gilman, E. L., Ellison, J., Duke, N. C., and Field, C.: Threats to mangroves from climate change and adaptation options: A review, Aquat. Bot., 89, 237–250, https://doi.org/10.1016/j.aquabot.2007.12.009, 2008.

Goulden, M. L., Miller, S. D., Da Rocha, H. R., Menton, M. C., de Freitas, H. C., Silva Figueira, A. M., and de Sousa, C. A. D.: Diel and seasonal patterns of tropical forest CO2 exchange, Ecol. Appl., 14, S42–S54, https://doi.org/10.1890/02-6008, 2004.

Greening, H., Doering, P., and Corbett, C.: Hurricane impacts on coastal ecosystems, Estuar. Coast., 29, 877-879, https://doi.org/10.1007/bf02798646, 2006.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, 2013.

Ito, A.: Evaluation of the impacts of defoliation by tropical cyclones on a Japanese forest's carbon budget using flux data and a process-based model, J. Geophys. Res., 115, G04013, https://doi.org/10.1029/2010jg001314, 2010.

Keith, H., van Gorsel, E., Jacobsen, K., and Cleugh, H.: Dynamics of carbon exchange in a Eucalyptus forest in response to interacting disturbance factors, Agr. Forest Meteorol., 153, 67–81, https://doi.org/10.1016/j.agrformet.2011.07.019, 2012.

Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A., and Sugi, M.: Tropical cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010.

Kovacs, J. M., Malczewski, J., and Flores-Verdugo, F.: Examining local ecological knowledge of hurricane impacts in a mangrove forest using an analytical hierarchy process (AHP) approach, J. Coastal Res., 20, 792–800, https://doi.org/10.2112/1551-5036(2004)20[792:elekoh]2.0.co;2, 2004.

Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon dynamics in mangrove ecosystems: A review, Aquat. Bot., 89, 201–219, https://doi.org/10.1016/j.aquabot.2007.12.005, 2008.

Kwon, H., Kim, J., Hong, J., and Lim, J. H.: Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea, Biogeosciences, 7, 1493–1504, https://doi.org/10.5194/bg-7-1493-2010, 2010.

Li, J. H., Powell, T. L., Seiler, T. J., Johnson, D. P., Anderson, H. P., Bracho, R., Hungate, B. A., Hinkle, C. R., and Drake, B. G.: Impacts of Hurricane Frances on Florida scrub-oak ecosystem processes: defoliation, net CO2 exchange and interactions with elevated CO2, Glob. Change Biol., 13, 1101–1113, https://doi.org/10.1111/j.1365-2486.2007.01358.x, 2007.

Lindroth, A., Lagergren, F., Grelle, A., Klemedtsson, L., Langvall, O., Weslien, P., and Tuulik, J.: Storms can cause Europe-wide reduction in forest carbon sink, Glob. Change Biol., 15, 346–355, https://doi.org/10.1111/j.1365-2486.2008.01719.x, 2008.

Mauder, M., and Foken, T.: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure, Meteorol. Z., 15, 597-609, https://doi.org/10.1127/0941-2948/2006/0167, 2006.

Milbrandt, E. C., Greenawalt-Boswell, J. M., Sokoloff, P. D., and Bortone, S. A.: Impact and response of southwest Florida mangroves to the 2004 hurricane season, Estuar. Coast., 29, 979–984, https://doi.org/10.1007/BF02798659, 2006.

Noormets, A., Chen, J., and Crow, T. R.: Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA, Ecosystems, 10, 187–203, https://doi.org/10.1007/s10021-007-9018-y, 2007.

O'Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., Brown, M., Fuentes, J. D., Göckede, M., and Black, A.: Radiative forcing of natural forest disturbances, Glob. Change Biol., 18, 555-565, https://doi.org/10.1111/j.1365-2486.2011.02577.x, 2012.

Ostertag, R., Scatena, F. N., and Silver, W. L.: Forest floor decomposition following hurricane litter inputs in several Puerto Rican forests, Ecosystems, 6, 261–273, https://doi.org/10.1007/s10021-002-0203-8, 2003.

Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B.: Correction of eddy-covariance measurements incorporating both advective effects and density fluxes, Bound.-Lay. Meteorol., 97, 487–511, https://doi.org/10.1023/a:1002786702909, 2000.

Powell, T. L., Gholz, H. L., Clark, K. L., Starr, G., CROPPER, W. P., and Martin, T. A.: Carbon exchange of a mature, naturally regenerated pine forest in north Florida, Glob. Change Biol., 14, 2523–2538, https://doi.org/10.1111/j.1365-2486.2008.01675.x, 2008.

Running, S. W.: Ecosystem disturbance, carbon, and climate, Science, 321, 652-653, https://doi.org/10.1126/science.1159607, 2008.

Sano, T., Hirano, T., Liang, N., Hirata, R., and Fujinuma, Y.: Carbon dioxide exchange of a larch forest after a typhoon disturbance, Forest Ecol. Manag., 260, 2214–2223, https://doi.org/10.1016/j.foreco.2010.09.026, 2010.

Tam, N. F. Y., Wong, Y. S., Lan, C. Y., and Wang, L. N.: Litter production and decomposition in a subtropical mangrove swamp receiving wastewater, J. Exp. Mar. Biol. Ecol., 226, 1–18, https://doi.org/10.1016/s0022-0981(97)00233-5, 1998.

Tomlinson, P. B.: The botany of mangroves, Cambridge University Press, New York, USA, 1986.

Turner, M. G., and Dale, V. H.: Comparing large, infrequent disturbances: what have we learned?, Ecosystems, 1, 493–496, https://doi.org/10.1007/s100219900045, 1998.

Valentini, R., Matteucci, G., Dolman, A., Schulze, E. D., Rebmann, C., Moors, E., Granier, A., Gross, P., Jensen, N., and Pilegaard, K.: Respiration as the main determinant of carbon balance in European forests, Nature, 404, 861-865, https://doi.org/10.1038/35009084, 2000.

Vargas, R.: How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest, Environ. Res. Lett., 7, 035704, https://doi.org/10.1088/1748-9326/7/3/035704, 2012.

Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R.: Changes in tropical cyclone number, duration, and intensity in a warming environment, Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448, 2005.

Wen, X. F., Wang, H. M., Wang, J. L., Yu, G. R., and Sun, X. M.: Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007, Biogeosciences, 7, 357–369, https://doi.org/10.5194/bgd-6-8691-2009, 2010.

Xu, X. N., Hirata, E., Enoki, T., and Tokashiki, Y.: Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance, Plant Ecol., 173, 161–170, https://doi.org/10.1023/b:vege.0000029319.05980.70, 2004.

Zhang, Y. P., Tan, Z. H., Song, Q. H., Yu, G. R., and Sun, X. M.: Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest, Atmos. Environ., 44, 3886–3893, https://doi.org/10.1016/j.atmosenv.2010.07.027, 2010.

Zheng, F. Z., Lu, C. Y., Zheng, W. J., and Lin, P.: Seasonal dynamics of litter fall and energy flow through the leaf litter of Kandelia candel mangrove in Jiulongjiang estuary, Fujian province, China, J. Xiamen University, 39, 693–698, 2000.