Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart

Journal of Cellular and Molecular Medicine - Tập 25 Số 1 - Trang 229-243 - 2021
Elvira Forte1, Mona Panahi2, Nicoleta Baxan3, Fu Siong Ng2, Joseph J. Boyle2, Jane Branca1, Olivia Bedard1, Muneer G. Hasham1, Lindsay Benson4, Siân E. Harding2, Nadia Rosenthal1, Susanne Sattler2
1The Jackson Laboratory, Bar Harbor, ME USA.
2National Heart and Lung Institute, Imperial College London, London, UK
3Biological Imaging Centre, Central Biomedical Services, Imperial College London, London, UK
4Central Biomedical Services, Imperial College London, London, UK

Tóm tắt

AbstractHeart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß‐adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol‐induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti‐heart auto‐antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol‐treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high‐throughput model for future studies of the pathological mechanisms of anti‐heart autoimmunity and to test potential immunomodulatory therapeutic approaches.

Từ khóa


Tài liệu tham khảo

10.1007/s00428-019-02662-1

10.1093/eurheartj/ehy462

10.1016/j.jacc.2019.02.018

10.21037/cdt.2017.03.21

10.1161/CIRCULATIONAHA.119.040631

10.1016/j.jacc.2010.03.014

10.1136/heartjnl-2016-309530

10.1161/CIRCULATIONAHA.117.031806

10.1093/eurheartj/ehn096

10.1007/978-3-319-57613-8_12

10.1038/s41569-018-0077-x

10.1038/s41569-019-0315-x

10.1155/2019/2164017

10.1038/ncomms14680

10.1161/CIRCHEARTFAILURE.119.006155

Sintou A, 2020, Persistent anti‐heart autoimmunity causes cardiomyocyte damage in chronic heart failure, BioRxiv, 8

Sattler S, 2017, The adaptive immune response to cardiac injury—the true roadblock to effective regenerative therapies? npj, Regen Med, 2, 19

10.1152/ajpheart.00335.2017

Rona G, 1959, An infarct‐like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat, A.M.A. Arch Pathol, 67, 443

Kung HF, 1978, Subcutaneous isoproterenol: a convenient rat model for early detection of myocardial necrosis, J Nucl Med, 19, 948

10.1016/S0022-2828(85)80132-2

10.1016/S0022-2828(77)80363-5

Stanton HC, 1967, Studies on isoproterenol‐induced cardiomegaly in rats, Proc West Pharmacol Soc, 10, 87

10.1161/01.HYP.0000071180.12012.6E

ChangSC et al.Isoproterenol‐induced heart failure mouse model using osmotic pump implantation.2018;1815:207‐220.

Králová E, 2008, Electrocardiography in two models of isoproterenol‐induced left ventricular remodeling, Physiol Res, 57, S83, 10.33549/physiolres.931556

10.1074/jbc.M607391200

10.1016/j.cell.2013.07.039

10.1161/CIRCULATIONAHA.107.728840

10.1242/dmm.027409

10.1038/nmeth.2089

10.1161/CIRCRESAHA.115.307778

10.1161/01.RES.65.3.657

10.3389/fcvm.2019.00100

10.1186/1755-1536-6-18

10.1152/physiolgenomics.00071.2010

10.1093/cvr/cvx183

10.1016/S0167-5273(02)00369-8

10.1038/mt.2015.66

10.1152/ajprenal.00076.2015

10.1016/j.jcin.2013.06.016

10.1038/nrneph.2013.250

10.1161/01.RES.75.1.105

10.1016/j.neubiorev.2010.07.002

10.1038/nmeth.1455

10.1161/JAHA.115.001993

10.3389/fimmu.2016.00070

10.1155/2015/484357

10.1161/CIRCHEARTFAILURE.116.003688

10.1016/j.tcm.2017.03.002

10.1001/jama.2018.7125

10.1177/0885066609340519

10.1161/CIRCULATIONAHA.112.111591

Sattler S, 2018, Takotsubo Syndrome. JACC: Basic to Translational, Science, 3, 779

10.1097/SHK.0b013e31828b247b

Schömig A, 1990, Catecholamines in myocardial ischemia. Systemic and cardiac release, Circulation, 82, p. II13‐22

10.1517/13543784.17.9.1315

10.1111/eci.12553

10.1113/eph8802490

10.1161/01.HYP.0000120964.22281.3e

10.1172/JCI44583

Adamo L, 2018, Modulation of subsets of cardiac B lymphocytes improves cardiac function after acute injury. JCI, Insight, 3

10.1093/eurheartj/ehv639

10.1186/s12967-019-1768-8

10.1007/s10875-013-9889-y

10.1161/CIRCRESAHA.111.243360

10.1038/s41536-017-0022-3

10.1172/JCI97192

Bageghni SA, 2019, Fibroblast‐specific deletion of IL‐1 receptor‐1 reduces adverse cardiac remodeling following myocardial infarction. JCI, Insight, 4, e125074

10.1038/srep24548

10.1016/j.bbi.2011.08.001

10.1097/00004872-200202000-00022

Tabbutt S, Pharmacology of cardiovascular drugs, 10.1016/B978-032301281-2.50009-6

10.1161/CIRCRESAHA.119.315800

10.1161/CIRCULATIONAHA.118.035420

10.3389/fphys.2018.00020

10.15420/cfr.2018.43.1

10.1016/j.celrep.2020.02.008