Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures

Journal of Applied Physics - Tập 85 Số 6 - Trang 3222-3233 - 1999
O. Ambacher1, J. Smart1, R. Leoni1, Nils Weimann1, K. Chu1, Michael J. Murphy1, W. J. Schaff1, L.F. Eastman1, R. Dimitrov2, L.L. Wittmer2, M. Stutzmann2, W. Rieger3, J. Hilsenbeck3
1School of Electrical Engineering, Cornell University, Ithaca, New York 14853
2Walter Schottky Institute, TU-Munich, Am Coulombwall, 85748 Garching, Germany
3Ferdinand Braun Institute, Rudower Chaussee 5, 12489 Berlin, Germany

Tóm tắt

Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15<x<0.5) and thickness between 20 and 65 nm demonstrate the important role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces. Characterization of the electrical properties of nominally undoped transistor structures reveals the presence of high sheet carrier concentrations, increasing from 6×1012 to 2×1013 cm−2 in the GaN channel with increasing Al-concentration from x=0.15 to 0.31. The observed high sheet carrier concentrations and strong confinement at specific interfaces of the N- and Ga-face pseudomorphic grown heterostructures can be explained as a consequence of interface charges induced by piezoelectric and spontaneous polarization effects.

Từ khóa


Tài liệu tham khảo

1995, Electron. Lett., 31, 1389, 10.1049/el:19950921

1996, IEEE Electron Device Lett., 17, 584, 10.1109/55.545778

1997, Electron. Lett., 33, 242, 10.1049/el:19970122

1997, IEEE Electron Device Lett., 18, 492, 10.1109/55.624930

1997, IEEE Electron Device Lett., 18, 290, 10.1109/55.585362

1998, Phys. Status Solidi A, 168, 7, 10.1002/(SICI)1521-396X(199808)168:2<R7::AID-PSSA99997>3.0.CO;2-B

1990, Appl. Phys. Lett., 56, 659, 10.1063/1.102729

1995, J. Appl. Phys., 77, 5747, 10.1063/1.359219

1997, J. Appl. Phys., 81, 6332, 10.1063/1.364368

1997, Electron. Lett., 33, 1230, 10.1049/el:19970843

1997, Appl. Phys. Lett., 71, 2794, 10.1063/1.120138

1997, Appl. Phys. Lett., 71, 3135, 10.1063/1.120269

1997, Jpn. J. Appl. Phys., Part 2, 36, L177, 10.1143/JJAP.36.L177

1997, Phys. Rev. B, 56, 10024, 10.1103/PhysRevB.56.R10024

1994, Phys. Rev. Lett., 72, 3618, 10.1103/PhysRevLett.72.3618

1998, MRS Internet J. Nitride Semicond. Res., 3, 15, 10.1557/S1092578300000879

1981, IEEE Ultrason. Symp., 1, 375

1997, J. Appl. Phys., 82, 2833, 10.1063/1.366114

1996, Physica B, 219&220, 547

1979, Neorg. Mater., 15, 1598

1996, Phys. Rev. B, 53, 16310, 10.1103/PhysRevB.53.16310

1997, Jpn. J. Appl. Phys., Part 2, 36, L177, 10.1143/JJAP.36.L177

1997, Appl. Phys. Lett., 71, 1504, 10.1063/1.119949

1974, J. Cryst. Growth, 32, 265

1994, Phys. Rev. Lett., 73, 2712, 10.1103/PhysRevLett.73.2712

1997, Mater. Res. Soc. Symp. Proc., 449, 1143

1998, MRS Internet J. Nitride Semicond. Res., 3, 11, 10.1557/S1092578300000831

1996, Appl. Phys. Lett., 69, 2480, 10.1063/1.117504

1997, Appl. Phys. Lett., 71, 2635, 10.1063/1.120163

1997, Phys. Rev. Lett., 79, 3934, 10.1103/PhysRevLett.79.3934

1998, Appl. Phys. Lett., 72, 2114, 10.1063/1.121293

1997, J. Cryst. Growth, 182, 17, 10.1016/S0022-0248(97)00320-5

1998, J. Appl. Phys., 64, 4531

1969, Phys. Rev. Lett., 22, 703, 10.1103/PhysRevLett.22.703

1976, Phys. Rev. B, 13, 2524, 10.1103/PhysRevB.13.2524

1979, J. Phys. Soc. Jpn., 47, 620, 10.1143/JPSJ.47.620

1984, Jpn. J. Appl. Phys., Part 1, 23, 1637, 10.1143/JJAP.23.1637

1983, Phys. Rev. Lett., 50, 1858, 10.1103/PhysRevLett.50.1858

1998, J. Appl. Phys., 84, 1703, 10.1063/1.368240

1978, Appl. Phys. Lett., 33, 665, 10.1063/1.90457

1991, Phys. Rev. B, 43, 4771

1962, J. Electrochem. Soc., 109, 1055, 10.1149/1.2425235

1980, Appl. Phys. Lett., 36, 295, 10.1063/1.91467

1985, IEEE Trans. Sonics Ultrason., SU-32, 634

1973, Appl. Phys. Lett., 23, 55, 10.1063/1.1654804

1975, Appl. Phys. Lett., 26, 625, 10.1063/1.88002

1997, J. Appl. Phys., 81, 6332, 10.1063/1.364368

1973, Phys. Rev. B, 7, 743, 10.1103/PhysRevB.7.743

1995, J. Appl. Phys., 77, 5747, 10.1063/1.359219

1998, Appl. Phys. Lett., 73, 238, 10.1063/1.121767

1998, Mater. Res. Soc. Symp. Proc., 483, 15

1994, Appl. Phys. Lett., 65, 610, 10.1063/1.112247

1996, Appl. Phys. Lett., 68, 2541, 10.1063/1.116177

1997, J. Appl. Phys., 82, 5090, 10.1063/1.366309

1997, Electron. Lett., 33, 242, 10.1049/el:19970122

1996, Appl. Phys. Lett., 69, 1438, 10.1063/1.117607

1998, IEEE Electron Device Lett., 19, 89, 10.1109/55.661174

1998, Appl. Phys. Lett., 72, 707, 10.1063/1.120852

1998, Electron. Lett., 34, 309, 10.1049/el:19980198

1998, Appl. Phys. Lett., 73, 1391, 10.1063/1.121954

1991, Appl. Phys. Lett., 58, 2408, 10.1063/1.104886

1998, Appl. Phys. Lett., 73, 818, 10.1063/1.122011

1995, J. Appl. Phys., 78, 6091, 10.1063/1.360549

1998, J. Appl. Phys., 83, 3656, 10.1063/1.366585