Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon
Tóm tắt
There are two levels of control of the expression of the levanase operon in Bacillus subtilis: induction by fructose, which involves a positive regulator, LevR, and the fructose phosphotransferase system encoded by this operon (lev-PTS), and a global regulation, catabolite repression. The LevR activator interacts with its target, the upstream activating sequence (UAS), to stimulate the transcription of the E sigma L complex bound at the "-12, -24" promoter. Levanase operon expression in the presence of glucose was tested in strains carrying a ccpA gene disruption or a ptsH1 mutation in which Ser-46 of HPr is replaced by Ala. In a levR+ inducible genetic background, the expression of the levanase operon was partially resistant to catabolite repression in both mutants, indicating that the CcpA repressor and the HPr-SerP protein are involved in the glucose control of this operon. In addition, a cis-acting catabolite-responsive element (CRE) of the levanase operon was identified and investigated by site-directed mutagenesis. The CRE sequence TGAAAACGCTT(a)ACA is located between positions -50 and -36 from the transcriptional start site, between the UAS and the -12, -24 promoter. However, in a background constitutive for levanase, neither HPr, CcpA, nor CRE is involved in glucose repression, suggesting the existence of a different pathway of glucose regulation. Using truncated LevR proteins, we showed that this CcpA-independent pathway required the presence of the domain of LevR (amino acids 411 to 689) homologous to the BglG family of bacterial antiterminators.
Từ khóa
Tài liệu tham khảo
Amster-Choder , O. , F. Houman , and A. Wright . 1989 . Protein phosphorylation regulates transcription of the ~-glucoside utilization operon in E. coli . Cell 58 : 847 - 855 .
Arnaud , M. , P. Vary , M. Zagorec , A. Klier , M. Débarbouillé , P. Postma , and G. Rapoport . 1992 . Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity . J. Bacteriol. 174 : 3161 - 3170 .
Biville , F. , and N. Guiso . 1985 . Evidence for the presence of cAMP, cAMP receptor and transcription termination factor rho in different gram-negative bacteria . J. Gen. Microbiol. 131 : 2953 - 2960 .
Chambliss G. H. 1993. Carbon source-mediated catabolite repression p. 213-218. In A. L. Sonenshein J. A. Hoch and R. Losick (ed.) Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. American Society for Microbiology Washington D.C.
Crutz , A. M. , M. Steinmetz , S. Aymerich , R. Richter , and D. Le Coq . 1990 . Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system . J. Bacteriol. 172 : 1043 - 1050 .
Débarbouillé , M. , I. Martin-Verstraete , A. Klier , and G. Rapoport . 1991 . The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both ~54- and phosphotransferase system-dependent regulators . Proc. Natl. Acad. Sci. USA 88 : 2212 - 2216 .
Débarbouillé , M. , I. Martin-Verstraete , F. Kunst , and G. Rapoport . 1991 . The Bacillus subtilis sigL gene encodes an equivalent of ~54 from Gramnegative bacteria . Proc. Natl. Acad. Sci. USA 88 : 9092 - 9096 .
Deutscher , J. , E. Küster , U. Bergstedt , V. Charrier , and W. Hillen . 1995 . Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria . Mol. Microbiol. 15 : 1049 - 1053 .
Deutscher , J. , J. Reizer , C. Fischer , A. Galinier , M. H. Saier , Jr. , and M. Steinmetz . 1994 . Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis . J. Bacteriol. 176 : 3336 - 3344 .
Dunning , A. M. , P. Talmud , and S. E. Humphries . 1988 . Errors in the polymerase chain reaction . Nucleic Acids Res. 16 : 10393 .
Eiserman , R. , J. Deutscher , G. Gonzy-Treboul , and W. Hengstenberg . 1988 . Site-directed mutagenesis with the ptsH gene of Bacillus subtilis: isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site . J. Biol. Chem. 263 : 17050 - 17054 .
Fisher , S. H. , and A. L. Sonenshein . 1991 . Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu . Rev. Microbiol. 45 : 107 - 135 .
Fouet , A. , and A. L. Sonenshein . 1990 . A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis . J. Bacteriol. 172 : 835 - 844 .
Henkin , T. M. , F. J. Grundy , W. L. Nicholson , and G. H. Chambliss . 1991 . Catabolite repression of ~-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors . Mol. Microbiol. 5 : 575 - 584 .
Hueck , C. J. , and W. Hillen . 1995 . Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria ? Mol. Microbiol. 15 : 395 - 401 .
Hueck , C. J. , W. Hillen , and M. H. Saier , Jr. 1994 . Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria . Res. Microbiol. 145 : 503 - 518 .
Jacob , S. , R. Allmansberger , D. Gärtner , and W. Hillen . 1991 . Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame . Mol. Gen. Genet. 229 : 189 - 196 .
Kraus , A. , C. Hueck , D. Gärtner , and W. Hillen . 1994 . Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression . J. Bacteriol. 176 : 1738 - 1745 .
Krüger , S. , J. Stülke , and M. Hecker . 1993 . Catabolite repression of ~-glucanase synthesis in Bacillus subtilis . J. Gen. Microbiol. 139 : 2047 - 2054 .
Kunkel , T. A. , J. D. Roberts , and R. A. Zakour . 1987 . Rapid and efficient site-specific mutagenesis without phenotypic selection . Methods Enzymol. 154 : 367 - 382 .
Kunst , F. , M. Steinmetz , J. -A. Lepesant , and R. Dedonder . 1977 . Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg168 . Biochimie 59 : 287 - 292 .
Le Coq , D. , C. Lindner , S. Krüger , M. Steinmetz , and J. Stülke . 1995 . New ~-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions, similar to those of BglF, its Escherichia coli homolog . J. Bacteriol. 177 : 1527 - 1535 .
Lopez , J. M. , and B. Thoms . 1977 . Role of sugar uptake and metabolic intermediates in catabolite repression in Bacillus subtilis . J. Bacteriol. 129 : 217 - 224 .
Magasanik B. and F. C. Neidhart. 1987. Regulation of carbon and nitrogen utilization p. 1318-1325. In F. C. Neidhart J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.
Martin , I. , M. Débarbouillé , E. Ferrari , A. Klier , and G. Rapoport . 1987 . Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase . Mol. Gen. Genet. 208 : 177 - 184 .
Martin , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1989 . Induction and metabolite regulation of levanase synthesis in Bacillus subtilis . J. Bacteriol. 171 : 1885 - 1892 .
Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1990 . Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon . J. Mol. Biol. 214 : 657 - 671 .
Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1992 . Mutagenesis of the Bacillus subtilis ``~12, ~24'' promoter of the levanase operon and evidence for the existence of an upstream activating sequence . J. Mol. Biol. 226 : 85 - 99 .
Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1994 . Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon . J. Mol. Biol. 241 : 178 - 192 .
Miller J. H. 1972. Experiments in molecular genetics p. 352-355. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.
Miwa , Y. , and Y. Fujita . 1993 . Promoter-independent catabolite repression of the Bacillus subtilis gnt operon . J. Biochem. 113 : 665 - 671 .
Mullis , K. B. , and F. A. Faloona . 1987 . Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction . Methods Enzymol. 155 : 335 - 350 .
Nicholson , W. L. , Y. -K. Park , T. M. Henkin , M. Won , M. J. Weickert , J. A. Gaskell , and G. H. Chambliss . 1987 . Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence . J. Mol. Biol. 198 : 609 - 618 .
Nihashi , J. I. , and Y. Fujita . 1984 . Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis . Biochim. Biophys. Acta 798 : 88 - 95 .
Postma , P. W. , J. W. Lengeler , and G. R. Jacobson . 1993 . Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria . Microbiol. Rev. 57 : 543 - 594 .
Reizer , J. , A. H. Romano , and J. Deutscher . 1993 . The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in Gram-positive bacteria . J. Cell. Biochem. 51 : 19 - 24 .
Reizer , J. , S. L. Sutrina , M. H. Saier , Jr. , G. C. Stewart , A. Peterkofsky , and P. Reddy . 1989 . Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr . EMBO J. 8 : 2111 - 2120 .
Saier , M. H. , Jr. 1989 . Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system . Microbiol. Rev. 53 : 109 - 120 .
Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.
Sanger , F. , S. Nicklen , and A. R. Coulson . 1977 . DNA sequencing with chain terminating inhibitors . Proc. Natl. Acad. Sci. USA 74 : 5463 - 5467 .
Scheler , A. , and W. Hillen . 1993 . Glucose is an anti-inducer for the Bacillus licheniformis encoded Xyl repressor . FEMS Microbiol. Lett. 107 : 299 - 302 .
Stülke , J. , I. Martin-Verstraete , V. Charrier , A. Klier , J. Deutscher , and G. Rapoport . 1995 . The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon . J. Bacteriol. 177 : 6928 - 6936 .
Sun , D. , and I. Takahashi . 1984 . A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis . Can. J. Microbiol. 30 : 423 - 429 .
Takahashi , I. 1963 . Transducing phages for Bacillus subtilis . J. Gen. Microbiol. 31 : 211 - 217 .
Trieu-Cuot , P. , and P. Courvalin . 1983 . Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3~5~-aminoglycoside phosphotransferase type III . Gene 23 : 331 - 341 .
Weickert , M. J. , and G. H. Chambliss . 1990 . Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis . Proc. Natl. Acad. Sci. USA 87 : 6238 - 6242 .