Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon

Journal of Bacteriology - Tập 177 Số 23 - Trang 6919-6927 - 1995
Isabelle Martin‐Verstraete1, Jörg Stülke1, André Klier1, Georges Rapoport1
1Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du Centre National de la Recherche Scientifique, Paris, France.

Tóm tắt

There are two levels of control of the expression of the levanase operon in Bacillus subtilis: induction by fructose, which involves a positive regulator, LevR, and the fructose phosphotransferase system encoded by this operon (lev-PTS), and a global regulation, catabolite repression. The LevR activator interacts with its target, the upstream activating sequence (UAS), to stimulate the transcription of the E sigma L complex bound at the "-12, -24" promoter. Levanase operon expression in the presence of glucose was tested in strains carrying a ccpA gene disruption or a ptsH1 mutation in which Ser-46 of HPr is replaced by Ala. In a levR+ inducible genetic background, the expression of the levanase operon was partially resistant to catabolite repression in both mutants, indicating that the CcpA repressor and the HPr-SerP protein are involved in the glucose control of this operon. In addition, a cis-acting catabolite-responsive element (CRE) of the levanase operon was identified and investigated by site-directed mutagenesis. The CRE sequence TGAAAACGCTT(a)ACA is located between positions -50 and -36 from the transcriptional start site, between the UAS and the -12, -24 promoter. However, in a background constitutive for levanase, neither HPr, CcpA, nor CRE is involved in glucose repression, suggesting the existence of a different pathway of glucose regulation. Using truncated LevR proteins, we showed that this CcpA-independent pathway required the presence of the domain of LevR (amino acids 411 to 689) homologous to the BglG family of bacterial antiterminators.

Từ khóa


Tài liệu tham khảo

Amster-Choder , O. , F. Houman , and A. Wright . 1989 . Protein phosphorylation regulates transcription of the ~-glucoside utilization operon in E. coli . Cell 58 : 847 - 855 .

Arnaud , M. , P. Vary , M. Zagorec , A. Klier , M. Débarbouillé , P. Postma , and G. Rapoport . 1992 . Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity . J. Bacteriol. 174 : 3161 - 3170 .

Biville , F. , and N. Guiso . 1985 . Evidence for the presence of cAMP, cAMP receptor and transcription termination factor rho in different gram-negative bacteria . J. Gen. Microbiol. 131 : 2953 - 2960 .

Chambliss G. H. 1993. Carbon source-mediated catabolite repression p. 213-218. In A. L. Sonenshein J. A. Hoch and R. Losick (ed.) Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. American Society for Microbiology Washington D.C.

Crutz , A. M. , M. Steinmetz , S. Aymerich , R. Richter , and D. Le Coq . 1990 . Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system . J. Bacteriol. 172 : 1043 - 1050 .

Débarbouillé , M. , I. Martin-Verstraete , A. Klier , and G. Rapoport . 1991 . The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both ~54- and phosphotransferase system-dependent regulators . Proc. Natl. Acad. Sci. USA 88 : 2212 - 2216 .

Débarbouillé , M. , I. Martin-Verstraete , F. Kunst , and G. Rapoport . 1991 . The Bacillus subtilis sigL gene encodes an equivalent of ~54 from Gramnegative bacteria . Proc. Natl. Acad. Sci. USA 88 : 9092 - 9096 .

Deutscher , J. , E. Küster , U. Bergstedt , V. Charrier , and W. Hillen . 1995 . Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria . Mol. Microbiol. 15 : 1049 - 1053 .

Deutscher , J. , J. Reizer , C. Fischer , A. Galinier , M. H. Saier , Jr. , and M. Steinmetz . 1994 . Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis . J. Bacteriol. 176 : 3336 - 3344 .

Dunning , A. M. , P. Talmud , and S. E. Humphries . 1988 . Errors in the polymerase chain reaction . Nucleic Acids Res. 16 : 10393 .

Eiserman , R. , J. Deutscher , G. Gonzy-Treboul , and W. Hengstenberg . 1988 . Site-directed mutagenesis with the ptsH gene of Bacillus subtilis: isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site . J. Biol. Chem. 263 : 17050 - 17054 .

Fisher , S. H. , and A. L. Sonenshein . 1991 . Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu . Rev. Microbiol. 45 : 107 - 135 .

Fouet , A. , and A. L. Sonenshein . 1990 . A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis . J. Bacteriol. 172 : 835 - 844 .

Henkin , T. M. , F. J. Grundy , W. L. Nicholson , and G. H. Chambliss . 1991 . Catabolite repression of ~-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors . Mol. Microbiol. 5 : 575 - 584 .

Hueck , C. J. , and W. Hillen . 1995 . Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria ? Mol. Microbiol. 15 : 395 - 401 .

Hueck , C. J. , W. Hillen , and M. H. Saier , Jr. 1994 . Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria . Res. Microbiol. 145 : 503 - 518 .

Jacob , S. , R. Allmansberger , D. Gärtner , and W. Hillen . 1991 . Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame . Mol. Gen. Genet. 229 : 189 - 196 .

Kraus , A. , C. Hueck , D. Gärtner , and W. Hillen . 1994 . Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression . J. Bacteriol. 176 : 1738 - 1745 .

Krüger , S. , J. Stülke , and M. Hecker . 1993 . Catabolite repression of ~-glucanase synthesis in Bacillus subtilis . J. Gen. Microbiol. 139 : 2047 - 2054 .

Kunkel , T. A. , J. D. Roberts , and R. A. Zakour . 1987 . Rapid and efficient site-specific mutagenesis without phenotypic selection . Methods Enzymol. 154 : 367 - 382 .

Kunst , F. , M. Steinmetz , J. -A. Lepesant , and R. Dedonder . 1977 . Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg168 . Biochimie 59 : 287 - 292 .

Le Coq , D. , C. Lindner , S. Krüger , M. Steinmetz , and J. Stülke . 1995 . New ~-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions, similar to those of BglF, its Escherichia coli homolog . J. Bacteriol. 177 : 1527 - 1535 .

Lopez , J. M. , and B. Thoms . 1977 . Role of sugar uptake and metabolic intermediates in catabolite repression in Bacillus subtilis . J. Bacteriol. 129 : 217 - 224 .

Magasanik B. and F. C. Neidhart. 1987. Regulation of carbon and nitrogen utilization p. 1318-1325. In F. C. Neidhart J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.

Martin , I. , M. Débarbouillé , E. Ferrari , A. Klier , and G. Rapoport . 1987 . Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase . Mol. Gen. Genet. 208 : 177 - 184 .

Martin , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1989 . Induction and metabolite regulation of levanase synthesis in Bacillus subtilis . J. Bacteriol. 171 : 1885 - 1892 .

Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1990 . Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon . J. Mol. Biol. 214 : 657 - 671 .

Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1992 . Mutagenesis of the Bacillus subtilis ``~12, ~24'' promoter of the levanase operon and evidence for the existence of an upstream activating sequence . J. Mol. Biol. 226 : 85 - 99 .

Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1994 . Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon . J. Mol. Biol. 241 : 178 - 192 .

Miller J. H. 1972. Experiments in molecular genetics p. 352-355. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

Miwa , Y. , and Y. Fujita . 1993 . Promoter-independent catabolite repression of the Bacillus subtilis gnt operon . J. Biochem. 113 : 665 - 671 .

Mullis , K. B. , and F. A. Faloona . 1987 . Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction . Methods Enzymol. 155 : 335 - 350 .

Nicholson , W. L. , Y. -K. Park , T. M. Henkin , M. Won , M. J. Weickert , J. A. Gaskell , and G. H. Chambliss . 1987 . Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence . J. Mol. Biol. 198 : 609 - 618 .

Nihashi , J. I. , and Y. Fujita . 1984 . Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis . Biochim. Biophys. Acta 798 : 88 - 95 .

Postma , P. W. , J. W. Lengeler , and G. R. Jacobson . 1993 . Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria . Microbiol. Rev. 57 : 543 - 594 .

Reizer , J. , A. H. Romano , and J. Deutscher . 1993 . The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in Gram-positive bacteria . J. Cell. Biochem. 51 : 19 - 24 .

Reizer , J. , S. L. Sutrina , M. H. Saier , Jr. , G. C. Stewart , A. Peterkofsky , and P. Reddy . 1989 . Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr . EMBO J. 8 : 2111 - 2120 .

Saier , M. H. , Jr. 1989 . Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system . Microbiol. Rev. 53 : 109 - 120 .

Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

Sanger , F. , S. Nicklen , and A. R. Coulson . 1977 . DNA sequencing with chain terminating inhibitors . Proc. Natl. Acad. Sci. USA 74 : 5463 - 5467 .

Scheler , A. , and W. Hillen . 1993 . Glucose is an anti-inducer for the Bacillus licheniformis encoded Xyl repressor . FEMS Microbiol. Lett. 107 : 299 - 302 .

Stülke , J. , I. Martin-Verstraete , V. Charrier , A. Klier , J. Deutscher , and G. Rapoport . 1995 . The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon . J. Bacteriol. 177 : 6928 - 6936 .

Sun , D. , and I. Takahashi . 1984 . A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis . Can. J. Microbiol. 30 : 423 - 429 .

Takahashi , I. 1963 . Transducing phages for Bacillus subtilis . J. Gen. Microbiol. 31 : 211 - 217 .

Trieu-Cuot , P. , and P. Courvalin . 1983 . Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3~5~-aminoglycoside phosphotransferase type III . Gene 23 : 331 - 341 .

Weickert , M. J. , and G. H. Chambliss . 1990 . Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis . Proc. Natl. Acad. Sci. USA 87 : 6238 - 6242 .

Wray , L. W. , Jr. , F. K. Pettengill , and S. H. Fisher . 1994 . Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site . J. Bacteriol. 176 : 1894 - 1902 .