Two Hexagonal Series of Lanthanoid(III) Oxide Fluoride Selenides: M6O2F8Se3 (M = La – Nd) and M2OF2Se (M = Nd, Sm, Gd – Ho)

Zeitschrift fur Anorganische und Allgemeine Chemie - Tập 641 Số 11 - Trang 1926-1933 - 2015
Dirk D. Zimmermann1, Hagen Grossholz1, Sarah Wolf1, Oliver Janka1,2, Alexander Müller1,3, Thomas Schleid1
1Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
2Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
3Institut für Textilchemie und Chemiefasern, Körschtalstr. 26, 73770 Denkendorf, Germany

Tóm tắt

Abstract

Two hexagonal series of lanthanoid(III) oxide fluoride selenides with similar structure types can be obtained by the reaction of the components MF3, M2O3, M, and Se in sealed niobium tubes at 850 °C using CsI as fluxing agent. The compounds with the lighter and larger representatives (M = La – Nd) occur with the formula M6O2F8Se3, whereas with the heavier and smaller ones (M = Nd, Sm, Gd – Ho) their composition is M2OF2Se. For both systems single‐crystal determinations were used in all cases. The compounds crystallize in the hexagonal crystal system (space group: P63/m) with lattice parameters of a = 1394–1331 pm and c = 403–372 pm (Z = 2 for M6O2F8Se3 and Z = 6 for M2OF2Se). The (M1)3+ cations show different square antiprismatic coordination spheres with or without an extra capping fluoride anion. All (M2)3+ cations exhibit a ninefold coordination environment shaped as tricapped trigonal prism. In both structure types the Se2– anions are sixfold coordinated as trigonal prisms of M3+ cations, being first condensed by edges to generate trimeric units and then via faces to form strands running along [001]. The light anions reside either in threefold triangular or in fourfold tetrahedral cationic coordination. For charge compensation, both structures have to contain a certain amount of oxide besides fluoride anions. Since F and O2– can not be distinguished by X‐ray diffraction, bond‐valence calculations were used to address the problem of their adjunction to the available crystallographic sites.

Từ khóa


Tài liệu tham khảo

10.1002/1521-3749(200112)627:12<2693::AID-ZAAC2693>3.0.CO;2-I

Blaschkowski B., 2007, Z. Kristallogr. Suppl., 25, 94

Sfez A., 1973, Bull. Soc. Fr. Mineral. Cristallogr., 96, 37

10.1107/S0567740873004875

10.1002/zaac.19956210611

Collin G., 1974, Bull. Soc. Chim. Fr., 418

10.1002/zaac.19865350427

Dagron M. C., 1969, C. R. Acad. Sci. Paris Ser. C, 268, 1867

10.1002/zaac.201200488

Schleid Th., 1991, Eur. J. Solid State Inorg. Chem., 28, 737

10.1016/S1293-2558(02)00038-9

10.1002/zaac.200900188

H. Grossholz Dissertation Universität Stuttgart Stuttgart 2003.

10.1002/1521-3749(200206)628:5<1012::AID-ZAAC1012>3.0.CO;2-F

10.5560/ZNB.2011.66b0213

Grossholz H., 2013, Z. Naturforsch., 751, 10.5560/znb.2013-3110

Grossholz H., 2000, Z. Kristallogr. Suppl., 17, 109

O. Janka D. D. Zimmermann R. Niewa Th. Schleid Inorg. Chem.2015 in preparation.

10.1002/zaac.201400349

Zimmermann D. D., 2014, Z. Kristallogr. Suppl., 34, 138

Nguyen H. D., 1973, Bull. Soc. Fr. Minéral. Cristallogr., 96, 41

10.1107/S0567740873006163

10.1107/S0365110X60000339

10.1107/S0108270100003024

10.1021/cr3004696

10.1107/S0108768185002063

10.1107/S0108768190011041

10.1107/S0567739476001551

10.1002/ange.19700820103

W. Herrendorf H. Bärnighausen HABITUS Program for the Optimization of Crystal Shape for Numerical Absorption Correction inX‐SHAPE(Version 1.06 Fa. Stoe Darmstadt 1999) Karlsruhe Gießen 1999.

G. M. Sheldrick SHELXL‐97 Program Suite for the Solutionand Refinement of Crystal Structures University of Göttingen 1997.

10.1107/S0108767307043930

Hahn Th., 1992, International Tables for Crystallography