Two-Dimensional Potential and Threshold Voltage Modeling of Work Function Engineered Double Gate High-k Gate Stack Schottky Barrier MOSFET
Tóm tắt
Following the ongoing research trend towards the development of nonconventional metal–oxide–semiconductor field-effect transistor (MOSFET) structures to reduce the detrimental influence of various short-channel effects associated with the continual miniaturization of device dimensions through several technology nodes, we have explored a Schottky barrier symmetric double gate (DG) MOSFET incorporating the concepts of gate engineering and dielectric engineering, viz. a work function engineered double gate Schottky barrier MOSFET with high-k gate stack. The study primarily addresses issues related to the source–channel and drain–channel junctions of highly scaled devices by considering metallic source and drain regions to benefit from the barrier height lowering at the metal–semiconductor junctions along with reduced contact resistances, which improves the performance of the proposed device in terms of surface potential, electric field, threshold voltage roll-off, drain-induced barrier lowering, etc. The results obtained from detailed two-dimensional threshold voltage modeling are found to be in excellent agreement with the simulation results, validating the presented analytical model.
Tài liệu tham khảo
The international technology roadmap for semiconductor, emerging research devices. (Published by Semiconductor Industry Association, 2009). https://www.semiconductors.org/wp-content/uploads/2018/09/ERD.pdf. Accessed 5 Sept 2009.
M.I. Current, S.W. Bedell, I.J. Malik, L.M. Feng, and F.J. Henley, Solid State Technol. 43, 66 (2000).
Q. Xie, Z. Wang, and Y. Taur, IEEE Trans. Electron Devices 64, 3511 (2017).
D. Roy and A. Biswas, Superlattices Microstruct. 113, 71 (2017).
H. Lu and Y. Taur, IEEE Trans. Electron Devices 53, 1161 (2006).
B. Manna, S. Sarkhel, N. Islam, S. Sarkar, and S.K. Sarkar, IEEE Trans. Electron Devices 59, 3280 (2012).
S. Sarkhel, N. Bagga, and S.K. Sarkar, J. Comput. Electron. 16, 704 (2017).
R. Saha, S. Sarkhel, and S.K. Sarkar, IETE Tech. Rev. 35, 1 (2018).
S. Sarkhel and S.K. Sarkar, Superlattices Microstruct. 82, 293 (2015).
P. Saha, S. Sarkhel, and S.K. Sarkar, J. Comput. Electron. 16, 648 (2017).
M.J. Martín-Martinez, C. Couso, E. Pascual, and R. Rengel, IEEE Trans. Electron Devices 61, 3955 (2014).
M.D. Marchi and D. Sacchetto, IEEE Trans. Nanotech. 13, 1029 (2014).
S.J. Choi and Y.K. Choi, Flash Memories, ed. I. Stievano (London: InTech, 2011), p. 177.
S. Kale and P.N. Kondekar, Superlattices Microstruct. 113, 799 (2018).
R. Shankar, G. Kushal, S. Maheshwaram, S. Dasgupta, and S.K. Manhas, IEEE Trans. Devices Mater. Reliab. 14, 689 (2014).
G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
M. Wu, Y.I. Alivov, and H. Morkoc, J. Mater. Sci. Mater. Electron. 19, 915 (2008).
T.K. Chiang and M.L. Chen, Solid State Electron. 51, 387 (2007).
R. Kaur, R. Chaujar, M. Saxena, and R.S. Gupta, Microelectron. Eng. 86, 2005 (2009).
M. Charmi, H.R. Mashayekhi, and A.A. Orouji, J. Comput. Electron. 13, 307 (2014).
B. Padmanaban, R. Ramesh, D. Nirmal, and S. Sathiyamoorthy, Superlattices Microstruct. 82, 40 (2015).
P. Banerjee, P. Saha, and S.K. Sarkar, J. Comput. Electron. 17, 172 (2018).
F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, and G. Graditi, IEEE Trans. Electron Devices. 68, 3352 (2018).
M.K. Anvarifard and A.A. Orouji, IEEE Trans. Electron Devices 65, 1653 (2018).
Y. Wang, Z.Y. Li, Y. Hao, X. Luo, J.P. Fang, Y. Ma, C. Yu, and F. Cao, IEEE Trans. Electron Devices 65, 2552 (2018).
F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, and F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017).
H.F. Xu and B.G. Guan, Jpn. J. Appl. Phys. 56, 054201 (2017).
R. Ishii, K. Matsumura, A. Sakai, and T. Sakata, Appl. Surf. Sci. 169–170, 658 (2001).
C.D. Gelatt and H. Ehrenreich, Phys. Rev. B 10, 398 (1974).
B.-Y. Tsui and C.-F. Huang, IEEE Electron Device Lett. 24, 153 (2003).
A. Pan, R. Liu, M. Sun, and C.-Z. Ning, ACS Nano 4, 671 (2010).
I. Ohkubo, H.M. Christen, P. Khalifah, S. Sathyamurthy, H.Y. Zhai, C.M. Rouleau, D.G. Mandrus, and D.H. Lowndes, Appl. Surf. Sci. 223, 35 (2004).
H.M. Christen, C.M. Rouleau, I. Ohkubo, H.Y. Zhai, H.N. Lee, S. Sathyamurthy, and D.H. Lowndes, Rev. Sci. Instrum. 74, 4058 (2003).
K.K. Young, IEEE Trans. Electron Devices 36, 399 (1989).
T.K. Chiang, Solid State Electron. 49, 317 (2004).
E. Goel, S. Kumar, K. Singh, B. Singh, M. Kumar, and S. Jit, IEEE Trans. Electron Devices 63, 966 (2016).
S. Basak, P. Saha, and S.K. Sarkar, in IEEE Conference Proceedings of RAECS UIET (2014), pp. 1–5.
M. Balaguer, B. Iñiguez, and J.B. Roldán, Solid State Electron. 64, 78 (2011).
C.-H. Shih and J.-S. Wang, Semicond. Sci. Technol. (2009). https://doi.org/10.1088/0268-1242/24/10/105012.
ATLAS User Manual: Silvaco International. Santa Clara, CA (2015).
D. Querlioz, J.S. Martin, K. Huet, A. Bournel, V.A. Fortuna, C. Chassat, S.G. Retailleau, and P. Dollfus, IEEE Trans. Electron Devices 54, 2232 (2007).
V. Kumari, M. Saxena, R.S. Gupta, and M. Gupta, IEEE Trans. Nanotechnol. 13, 667 (2014).
S. Kumar, E. Goel, K. Singh, B. Singh, P.K. Singh, K. Baral, and S. Jit, IEEE Trans. Electron Devices 64, 960 (2017).
Y. Omura, S. Horiguchi, M. Tabe, and K. Kishi, IEEE Electron Device Lett. 14, 569 (1993).