Lewis, 2016, Science, 351, aad1920, 10.1126/science.aad1920
Xiao, 2015, Bull. Chem. Soc. Jpn., 88, 1250, 10.1246/bcsj.20150110
Shibayama, 2015, Bull. Chem. Soc. Jpn., 88, 366, 10.1246/bcsj.20140344
Ida, 2015, Bull. Chem. Soc. Jpn., 88, 1619, 10.1246/bcsj.20150183
Kumagai, 2015, Bull. Chem. Soc. Jpn., 88, 584, 10.1246/bcsj.20140395
Adhikari, 2015, Bull. Chem. Soc. Jpn., 88, 1108, 10.1246/bcsj.20150092
Maeda, 2016, Bull. Chem. Soc. Jpn., 89, 627, 10.1246/bcsj.20150441
Wang, 2016, Coord. Chem. Rev., 307, 361, 10.1016/j.ccr.2015.09.002
Komori, 2016, Bull. Chem. Soc. Jpn., 89, 603, 10.1246/bcsj.20150419
Tanihara, 2016, Bull. Chem. Soc. Jpn., 89, 1048, 10.1246/bcsj.20160169
Georgakilas, 2016, Chem. Rev., 116, 5464, 10.1021/acs.chemrev.5b00620
Hosseini, 2016, Renewable Sustainable Energy Rev., 57, 850, 10.1016/j.rser.2015.12.112
Kamegawa, 2016, Bull. Chem. Soc. Jpn., 89, 743, 10.1246/bcsj.20160080
Peng, 2016, Chem. Soc. Rev., 45, 1225, 10.1039/C5CS00777A
Kataoka, 2016, Bull. Chem. Soc. Jpn., 89, 103, 10.1246/bcsj.20150325
Erwin, 2016, Energy Environ. Sci., 9, 1577, 10.1039/C5EE03847B
Malgras, 2015, Bull. Chem. Soc. Jpn., 88, 1171, 10.1246/bcsj.20150143
Liu, 2016, Nanoscale, 8, 6209, 10.1039/C5NR05207F
Bairi, 2016, ACS Nano, 10, 8796, 10.1021/acsnano.6b04535
Sakaushi, 2015, Bull. Chem. Soc. Jpn., 88, 386, 10.1246/bcsj.20140317
Huang, 2015, Bull. Chem. Soc. Jpn., 88, 617, 10.1246/bcsj.20140416
Yamamoto, 2016, Bull. Chem. Soc. Jpn., 89, 501, 10.1246/bcsj.20150420
Tabuchi, 2015, Bull. Chem. Soc. Jpn., 88, 1378, 10.1246/bcsj.20150228
Wu, 2016, Chem. Soc. Rev., 45, 3781, 10.1039/C5CS00472A
Ariga, 2011, J. Nanosci. Nanotechnol., 11, 1, 10.1166/jnn.2011.3839
Ariga, 2012, NPG Asia Mater., 4, e17, 10.1038/am.2012.30
Ariga, 2015, Mater. Horiz., 2, 406, 10.1039/C5MH00012B
Aono, 2016, Adv. Mater., 28, 989, 10.1002/adma.201502868
Ariga, 2016, Polym. J., 48, 371, 10.1038/pj.2016.8
Ariga, 2016, ChemNanoMat, 2, 333, 10.1002/cnma.201600053
Ariga, 2016, Jpn. J. Appl. Phys., 55, 1102A6, 10.7567/JJAP.55.1102A6
Hecht, 2003, Angew. Chem., Int. Ed., 42, 24, 10.1002/anie.200390045
Ariga, 2014, Chem. Lett., 43, 36, 10.1246/cl.130987
Shirai, 2016, Jpn. J. Appl. Phys., 55, 1102A2, 10.7567/JJAP.55.1102A2
Wakayama, 2016, Jpn. J. Appl. Phys., 55, 1102AA, 10.7567/JJAP.55.1102AA
Ariga, 2012, Bull. Chem. Soc. Jpn., 85, 1, 10.1246/bcsj.20110162
Rydzek, 2015, Nano Today, 10, 138, 10.1016/j.nantod.2015.02.008
Cordier, 2015, J. Inorg. Organomet. Polym. Mater., 25, 189, 10.1007/s10904-014-0112-2
Pan, 2015, J. Inorg. Organomet. Polym. Mater., 25, 179, 10.1007/s10904-014-0073-5
Zhang, 2016, Adv. Mater., 28, 1044, 10.1002/adma.201502590
Wang, 2008, Proc. IEEE, 96, 212, 10.1109/JPROC.2007.911055
Li, 2016, Adv. Mater., 28, 1319, 10.1002/adma.201502577
Ishihara, 2014, Phys. Chem. Chem. Phys., 16, 9713, 10.1039/c3cp55431g
Ariga, 2016, Analyst, 141, 2629, 10.1039/C6AN00057F
Pandeeswar, 2016, ACS Appl. Mater. Interfaces, 8, 30362, 10.1021/acsami.6b10527
Ariga, 2016, Anal. Sci., 32, 1141, 10.2116/analsci.32.1141
Ariga, 2012, J. Mater. Chem., 22, 2369, 10.1039/C1JM14101E
Jiang, 2016, Nanoscale, 8, 11511, 10.1039/C6NR00917D
Puscasu, 2015, J. Inorg. Organomet. Polym. Mater., 25, 259, 10.1007/s10904-014-0132-y
Ariga, 2016, CrystEngComm, 18, 6770, 10.1039/C6CE00986G
Abe, 2016, Mater. Today, 19, 12, 10.1016/j.mattod.2015.08.021
Ariga, 2016, Adv. Mater., 28, 1251, 10.1002/adma.201502545
Ariga, 2013, Chem. Soc. Rev., 42, 6322, 10.1039/c2cs35475f
Kujawa, 2013, Langmuir, 29, 7354, 10.1021/la4014619
Ariga, 2012, Chem. Mater., 24, 728, 10.1021/cm202281m
Psarra, 2015, ACS Appl. Mater. Interfaces, 7, 12516, 10.1021/am508161q
Nakanishi, 2014, Nano Today, 9, 378, 10.1016/j.nantod.2014.05.002
Rajendran, 2015, J. Inorg. Organomet. Polym. Mater., 25, 267, 10.1007/s10904-014-0102-4
Rajendran, 2014, J. Mater. Chem. A, 2, 18480, 10.1039/C4TA03996C
Takada, 2013, Langmuir, 29, 7538, 10.1021/la3045253
Takada, 2015, J. Inorg. Organomet. Polym. Mater., 25, 205, 10.1007/s10904-014-0127-8
Zou, 2016, Adv. Mater., 28, 1031, 10.1002/adma.201502454
Novoselov, 2012, Nature, 490, 192, 10.1038/nature11458
Abergel, 2010, Adv. Phys., 59, 261, 10.1080/00018732.2010.487978
Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y
Nair, 2008, Science, 320, 1308, 10.1126/science.1156965
Lee, 2008, Science, 321, 385, 10.1126/science.1157996
Balandin, 2008, Nano Lett., 8, 902, 10.1021/nl0731872
Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896
Zhang, 2005, Nature, 438, 201, 10.1038/nature04235
Ponomarenko, 2013, Nature, 497, 594, 10.1038/nature12187
Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589
Huang, 2013, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c
Chhowalla, 2015, Chem. Soc. Rev., 44, 2584, 10.1039/C5CS90037A
Zhang, 2015, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040
Tan, 2015, Chem. Soc. Rev., 44, 2713, 10.1039/C4CS00182F
Zhi, 2009, Adv. Mater., 21, 2889, 10.1002/adma.200900323
Ong, 2016, Chem. Rev., 116, 7159, 10.1021/acs.chemrev.6b00075
Xu, 2013, Chem. Rev., 113, 3766, 10.1021/cr300263a
Osada, 2009, J. Mater. Chem., 19, 2503, 10.1039/b820160a
Wang, 2012, Chem. Rev., 112, 4124, 10.1021/cr200434v
Huang, 2011, Nat. Nanotechnol., 6, 28, 10.1038/nnano.2010.235
Huang, 2011, Nat. Commun., 2, 292, 10.1038/ncomms1291
Duan, 2014, Nat. Commun., 5, 3093, 10.1038/ncomms4093
Fan, 2015, Chem. Sci., 6, 95, 10.1039/C4SC02571G
Peng, 2014, Science, 346, 1356, 10.1126/science.1254227
Rodenas, 2015, Nat. Mater., 14, 48, 10.1038/nmat4113
Colson, 2011, Science, 332, 228, 10.1126/science.1202747
Kory, 2014, Nat. Chem., 6, 779, 10.1038/nchem.2007
Kissel, 2014, Nat. Chem., 6, 774, 10.1038/nchem.2008
Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138
Liu, 2015, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A
Lalmi, 2010, Appl. Phys. Lett., 97, 223109, 10.1063/1.3524215
Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849
Paton, 2014, Nat. Mater., 13, 624, 10.1038/nmat3944
Novoselov, 2005, Proc. Natl. Acad. Sci. U.S.A., 102, 10451, 10.1073/pnas.0502848102
Goyal, 2010, Appl. Phys. Lett., 97, 133117, 10.1063/1.3494529
Dean, 2010, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Li, 2012, Small, 8, 63, 10.1002/smll.201101016
Li, 2013, Small, 9, 1974, 10.1002/smll.201202919
Castellanos-Gomez, 2014, 2D Mater., 1, 025001, 10.1088/2053-1583/1/2/025001
Li, 2014, Acc. Chem. Res., 47, 1067, 10.1021/ar4002312
Hernandez, 2008, Nat. Nanotechnol., 3, 563, 10.1038/nnano.2008.215
Coleman, 2011, Science, 331, 568, 10.1126/science.1194975
Khan, 2013, Nanoscale, 5, 581, 10.1039/C2NR33049K
Nicolosi, 2013, Science, 340, 1226419, 10.1126/science.1226419
Hanlon, 2014, Chem. Mater., 26, 1751, 10.1021/cm500271u
Brent, 2014, Chem. Commun., 50, 13338, 10.1039/C4CC05752J
Liang, 2015, J. Am. Chem. Soc., 137, 3102, 10.1021/jacs.5b00021
Dines, 1975, Mater. Res. Bull., 10, 287, 10.1016/0025-5408(75)90115-4
Joensen, 1986, Mater. Res. Bull., 21, 457, 10.1016/0025-5408(86)90011-5
Viculis, 2005, J. Mater. Chem., 15, 974, 10.1039/b413029d
Zeng, 2011, Angew. Chem., Int. Ed., 50, 11093, 10.1002/anie.201106004
Zeng, 2012, Angew. Chem., Int. Ed., 51, 9052, 10.1002/anie.201204208
Zeng, 2014, Energy Environ. Sci., 7, 797, 10.1039/C3EE42620C
Zhang, 2014, Nat. Commun., 5, 2995, 10.1038/ncomms3995
Parvez, 2014, J. Am. Chem. Soc., 136, 6083, 10.1021/ja5017156
Shen, 2016, Nano Today, 11, 483, 10.1016/j.nantod.2016.07.005
Castellanos-Gomez, 2012, Nano Lett., 12, 3187, 10.1021/nl301164v
Li, 2009, Science, 324, 1312, 10.1126/science.1171245
Song, 2010, Nano Lett., 10, 3209, 10.1021/nl1022139
Lee, 2012, Adv. Mater., 24, 2320, 10.1002/adma.201104798
Ji, 2015, Chem. Soc. Rev., 44, 2587, 10.1039/C4CS00258J
Shi, 2015, Chem. Soc. Rev., 44, 2744, 10.1039/C4CS00256C
Yoo, 2014, J. Am. Chem. Soc., 136, 14670, 10.1021/ja5079943
Fan, 2015, Nat. Commun., 6, 6571, 10.1038/ncomms7571
Gao, 2014, Angew. Chem., Int. Ed., 53, 12789, 10.1002/anie.201407836
Sun, 2014, Nat. Commun., 5, 3813, 10.1038/ncomms4813
Acharya, 2013, Nano Lett., 13, 409, 10.1021/nl303568d
Sun, 2012, Nat. Commun., 3, 1057, 10.1038/ncomms2066
Tan, 2015, Nat. Commun., 6, 7873, 10.1038/ncomms8873
Geim, 2009, Science, 324, 1530, 10.1126/science.1158877
Wu, 2007, Chem. Rev., 107, 718, 10.1021/cr068010r
Guinea, 2010, Nat. Phys., 6, 30, 10.1038/nphys1420
Banks, 2004, Chem. Commun., 21, 1804, 10.1039/b406174h
Li, 2011, ACS Nano, 5, 2264, 10.1021/nn103537q
Kampouris, 2010, Chem. Commun., 46, 8986, 10.1039/c0cc02860f
Blake, 2008, Nano Lett., 8, 1704, 10.1021/nl080649i
Hernandez, 2010, Langmuir, 26, 3208, 10.1021/la903188a
Lotya, 2010, ACS Nano, 4, 3155, 10.1021/nn1005304
Englert, 2009, Adv. Mater., 21, 4265, 10.1002/adma.200901578
Brownson, 2011, Electroanalysis, 23, 894, 10.1002/elan.201000708
Li, 2008, Nat. Nanotechnol., 3, 538, 10.1038/nnano.2008.210
Vallés, 2008, J. Am. Chem. Soc., 130, 15802, 10.1021/ja808001a
Behabtu, 2010, Nat. Nanotechnol., 5, 406, 10.1038/nnano.2010.86
Takada, 1985, Tanso, 110, 10.7209/tanso.1985.110
Jnioui, 1982, Electrochim. Acta, 27, 1247, 10.1016/0013-4686(82)80143-6
Low, 2013, Carbon, 54, 1, 10.1016/j.carbon.2012.11.030
Su, 2011, ACS Nano, 5, 2332, 10.1021/nn200025p
Wang, 2009, Carbon, 47, 3242, 10.1016/j.carbon.2009.07.040
Alanyalıoğlu, 2012, Carbon, 50, 142, 10.1016/j.carbon.2011.07.064
Morales, 2011, Carbon, 49, 2809, 10.1016/j.carbon.2011.03.008
Zhong, 2012, J. Am. Chem. Soc., 134, 17896, 10.1021/ja309023f
Voiry, 2015, Chem. Soc. Rev., 44, 2702, 10.1039/C5CS00151J
Dreyer, 2010, Angew. Chem., Int. Ed., 49, 9336, 10.1002/anie.201003024
Dreyer, 2010, Chem. Soc. Rev., 39, 228, 10.1039/B917103G
Allen, 2010, Chem. Rev., 110, 132, 10.1021/cr900070d
Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017
Zhu, 2010, Adv. Mater., 22, 3906, 10.1002/adma.201001068
Huang, 2012, Chem. Soc. Rev., 41, 666, 10.1039/C1CS15078B
Tan, 2013, Mater. Today, 16, 29, 10.1016/j.mattod.2013.01.021
Ambrosi, 2014, Chem. Rev., 114, 7150, 10.1021/cr500023c
Huang, 2014, Adv. Mater., 26, 2185, 10.1002/adma.201304964
Kuilla, 2010, Prog. Polym. Sci., 35, 1350, 10.1016/j.progpolymsci.2010.07.005
Ambrosi, 2016, Chem. Soc. Rev., 45, 2458, 10.1039/C6CS00136J
Zhang, 2013, ACS Nano, 7, 8963, 10.1021/nn403454e
Zhang, 2013, Chem. Soc. Rev., 42, 3127, 10.1039/c3cs00009e
10.1007/978-0-387-49323-7_3
Ghosh, 2016, Nanoscale, 8, 6921, 10.1039/C5NR08803H
Badwal, 2015, Appl. Energy, 145, 80, 10.1016/j.apenergy.2015.02.002
Holade, 2013, ACS Catal., 3, 2403, 10.1021/cs400559d
Ghosh, 2015, Int. J. Hydrogen Energy, 40, 4951, 10.1016/j.ijhydene.2015.01.101
Liu, 2014, Chem. Rev., 114, 5117, 10.1021/cr400523y
Sardar, 2016, RSC Adv., 6, 33433, 10.1039/C6RA01863G
Seger, 2009, J. Phys. Chem. C, 113, 7990, 10.1021/jp900360k
Yoo, 2009, Nano Lett., 9, 2255, 10.1021/nl900397t
Kar, 2016, Sci. Technol. Adv. Mater., 17, 375, 10.1080/14686996.2016.1201413
Jin, 2010, Chem. Mater., 22, 5695, 10.1021/cm102187a
Guo, 2010, ACS Nano, 4, 547, 10.1021/nn9014483
Dong, 2010, Carbon, 48, 781, 10.1016/j.carbon.2009.10.027
Zhang, 2011, ACS Nano, 5, 1785, 10.1021/nn102467s
Stankovich, 2006, Nature, 442, 282, 10.1038/nature04969
Rao, 2009, Angew. Chem., Int. Ed., 48, 7752, 10.1002/anie.200901678
Du, 2008, Nat. Nanotechnol., 3, 491, 10.1038/nnano.2008.199
Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087
Kou, 2011, J. Am. Chem. Soc., 133, 2541, 10.1021/ja107719u
Ghosh, 2015, J. Mater. Chem. A, 3, 9517, 10.1039/C5TA00923E
Shin, 2013, Energy Environ. Sci., 6, 608, 10.1039/C2EE22739H
Wang, 2009, ACS Nano, 3, 907, 10.1021/nn900150y
Paek, 2009, Nano Lett., 9, 72, 10.1021/nl802484w
Goncalves, 2009, Chem. Mater., 21, 4796, 10.1021/cm901052s
Xu, 2008, J. Phys. Chem. C, 112, 19841, 10.1021/jp807989b
Ghosh, 2016, Electrochim. Acta, 212, 864, 10.1016/j.electacta.2016.06.169
Gong, 2009, Science, 323, 760, 10.1126/science.1168049
Wang, 2014, ACS Nano, 8, 4940, 10.1021/nn500959v
Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390
Liu, 2016, J. Mater. Chem. A, 4, 1694, 10.1039/C5TA10551J
Jahan, 2013, Adv. Funct. Mater., 23, 5363, 10.1002/adfm.201300510
Higgins, 2016, Energy Environ. Sci., 9, 357, 10.1039/C5EE02474A
Tao, 2016, Chem. Commun., 52, 2764, 10.1039/C5CC09173J
Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563
Deng, 2011, Chem. Commun., 47, 10016, 10.1039/c1cc13033a
Jeon, 2011, Chem. Mater., 23, 3987, 10.1021/cm201542m
Gong, 2015, Chem. Mater., 27, 1181, 10.1021/cm5037502
Lyth, 2009, J. Phys. Chem. C, 113, 20148, 10.1021/jp907928j
Yang, 2011, Angew. Chem., Int. Ed., 50, 5339, 10.1002/anie.201100170
Zheng, 2011, J. Am. Chem. Soc., 133, 20116, 10.1021/ja209206c
Shao, 2016, Chem. Rev., 116, 3594, 10.1021/acs.chemrev.5b00462
Wu, 2013, Acc. Chem. Res., 46, 1848, 10.1021/ar300359w
Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48
Jung, 2014, Angew. Chem., Int. Ed., 53, 4582, 10.1002/anie.201311223
Lee, 2012, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507
Ghosh, 2016, Catal. Sci. Technol., 6, 1417, 10.1039/C5CY01264C
Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783
Ma, 2014, Angew. Chem., Int. Ed., 53, 7281, 10.1002/anie.201403946
Rowley-Neale, 2015, Nanoscale, 7, 18152, 10.1039/C5NR05164A
Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s
Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483
Cummins, 2016, Nat. Commun., 7, 11857, 10.1038/ncomms11857
Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700
Chua, 2016, ACS Catal., 6, 5724, 10.1021/acscatal.6b01593
Liao, 2013, Adv. Funct. Mater., 23, 5326, 10.1002/adfm.201300318
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476
Wang, 2013, Energy Environ. Sci., 6, 625, 10.1039/C2EE23513G
Gao, 2009, J. Am. Chem. Soc., 131, 7486, 10.1021/ja900506x
Gao, 2012, J. Am. Chem. Soc., 134, 2930, 10.1021/ja211526y
Gao, 2011, Angew. Chem., Int. Ed., 50, 4905, 10.1002/anie.201007036
Gao, 2010, J. Mater. Chem., 20, 9355, 10.1039/c0jm01547d
Gao, 2012, Small, 8, 13, 10.1002/smll.201101573
Gao, 2013, Chem. Soc. Rev., 42, 2986, 10.1039/c2cs35310e
Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h
Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h
Gao, 2015, Nat. Commun., 6, 5982, 10.1038/ncomms6982
Deng, 2015, Energy Environ. Sci., 8, 1594, 10.1039/C5EE00751H
Yang, 2013, Angew. Chem., Int. Ed., 52, 13751, 10.1002/anie.201307475
Cai, 2015, J. Am. Chem. Soc., 137, 2844, 10.1021/jacs.5b00317
Tarascon, 2001, Nature, 414, 359, 10.1038/35104644
Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297
Wang, 2014, Nano Energy, 7, 86, 10.1016/j.nanoen.2014.04.009
Zhu, 2011, Science, 332, 1537, 10.1126/science.1200770
Peng, 2014, Chem. Soc. Rev., 43, 3303, 10.1039/c3cs60407a
Peng, 2016, Small, 12, 6183, 10.1002/smll.201602109
Peng, 2016, Adv. Energy Mater., 6, 1600025, 10.1002/aenm.201600025
Chen, 2012, Chem. Rev., 112, 6027, 10.1021/cr300115g
Han, 2013, Small, 9, 1173, 10.1002/smll.201203155
Xu, 2013, Energy Environ. Sci., 6, 1388, 10.1039/c3ee23870a
Han, 2014, Adv. Mater., 26, 849, 10.1002/adma.201303115
Yang, 2013, Science, 341, 534, 10.1126/science.1239089
El-Kady, 2012, Science, 335, 1326, 10.1126/science.1216744
Yang, 2010, Angew. Chem., Int. Ed., 49, 4795, 10.1002/anie.201001634
Yang, 2011, Adv. Mater., 23, 3575, 10.1002/adma.201101599
Wang, 2015, Nanomaterials, 5, 1667, 10.3390/nano5041667
Shi, 2011, J. Mater. Chem., 21, 3422, 10.1039/c0jm03175e
Wang, 2013, RSC Adv., 3, 21675, 10.1039/c3ra43699c
Huang, 2013, Small, 9, 3693, 10.1002/smll.201300415
Ma, 2015, J. Power Sources, 285, 274, 10.1016/j.jpowsour.2015.03.120
Ma, 2015, ChemElectroChem, 2, 538, 10.1002/celc.201402393
Hwang, 2011, Nano Lett., 11, 4826, 10.1021/nl202675f
Qian, 2012, Green Chem., 14, 371, 10.1039/C1GC16134B
Sun, 2014, Chem. Soc. Rev., 43, 530, 10.1039/C3CS60231A
Wang, 2014, ACS Nano, 8, 3724, 10.1021/nn500386u
Gu, 2013, Adv. Energy Mater., 3, 1262, 10.1002/aenm201300549
Lukatskaya, 2013, Science, 341, 1502, 10.1126/science.1241488
Wu, 2013, Nat. Commun., 4, 2431, 10.1038/ncomms3431
Cao, 2013, Small, 9, 2905, 10.1002/smll.201203164
Yang, 2014, Adv. Mater., 26, 8163, 10.1002/adma.201402847
Krishnamoorthy, 2014, Mater. Res. Bull., 50, 499, 10.1016/j.materresbull.2013.11.019
Ramadoss, 2014, New J. Chem., 38, 2379, 10.1039/c3nj01558k
Acerce, 2015, Nat. Nanotechnol., 10, 313, 10.1038/nnano.2015.40
Wang, 2014, Nanoscale, 6, 5351, 10.1038/ncomms3431
Wan, 2014, Small, 10, 4975, 10.1002/smll.201401286
Zhang, 2014, Chem.—Eur. J., 20, 5219, 10.1002/chem.201400128
Chang, 2011, ACS Nano, 5, 4720, 10.1021/nn200659w
Wang, 2014, Adv. Mater., 26, 7162, 10.1002/adma.201402728
Liu, 2014, J. Mater. Chem. A, 2, 13109, 10.1039/C4TA01644K
Teng, 2016, ACS Nano, 10, 8526, 10.1021/acsnano.6b03683
Tang, 2015, Adv. Mater., 27, 1117, 10.1002/adma.201404622
Gopalakrishnan, 2015, Nano Energy, 12, 52, 10.1016/j.nanoen.2014.12.005
Mai, 2013, Nat. Commun., 4, 2923, 10.1038/ncomms3923
Ren, 2013, Adv. Mater., 25, 5965, 10.1002/adma.201302498
Seo, 2013, Adv. Energy Mater., 3, 1316, 10.1002/aenm.201300431
Zhong, 2013, Nano Energy, 2, 1025, 10.1016/j.nanoen.2013.04.001
Ling, 2014, Proc. Natl. Acad. Sci. U.S.A., 111, 16676, 10.1073/pnas.1414215111
Luo, 2016, Acc. Chem. Res., 49, 231, 10.1021/acs.accounts.5b00482
Hu, 2014, Angew. Chem., Int. Ed., 126, 13008, 10.1002/ange.201407898
Lacey, 2015, Nano Lett., 15, 1018, 10.1021/nl503871s
Xiong, 2015, Sci. Rep., 5, 9254, 10.1038/srep09254
Zhu, 2014, Angew. Chem., Int. Ed., 53, 2152, 10.1002/anie.201308354
Choi, 2015, Adv. Funct. Mater., 25, 1780, 10.1002/adfm.201402428
David, 2014, ACS Nano, 8, 1759, 10.1021/nn406156b
Xie, 2015, Adv. Funct. Mater., 25, 1393, 10.1002/adfm.201404078
Guo, 2016, Science, 351, 361, 10.1126/science.aad0832
Lee, 2016, Nanomaterials, 6, 194, 10.3390/nano6110194
Sofer, 2016, Angew. Chem., Int. Ed., 55, 3382, 10.1002/anie.201511309
Mayorga-Martinez, 2015, Angew. Chem., Int. Ed., 54, 14317, 10.1002/anie.201505015
Wu, 2016, Small, 12, 5276, 10.1002/smll.201601267
Bastakoti, 2015, J. Nanosci. Nanotechnol., 15, 4747, 10.1166/jnn.2015.9694
Lian, 2012, Chem. Commun., 48, 5151, 10.1039/c2cc31708g
Bastakoti, 2013, Eur. J. Inorg. Chem., 39, 10.1002/ejic.201200939
Zakaria, 2016, Angew. Chem., Int. Ed., 55, 8426, 10.1002/anie.201603223
Wakamiya, 2015, Bull. Chem. Soc. Jpn., 88, 1357, 10.1246/bcsj.20150151
Aratani, 2015, Bull. Chem. Soc. Jpn., 88, 1, 10.1246/bcsj.20140212
Yagai, 2015, Bull. Chem. Soc. Jpn., 88, 28, 10.1246/bcsj.20140261
Tobe, 2016, Bull. Chem. Soc. Jpn., 89, 1277, 10.1246/bcsj.20160214
Paredes, 2016, Nanoscale, 8, 15389, 10.1039/C6NR02039A
Hernandez, 2008, Nat. Nanotechnol., 3, 563, 10.1038/nnano.2008.215
Wang, 2015, Nanoscale, 7, 2471, 10.1039/C4NR05732E