Twenty-five years of natural coordinates
Tóm tắt
Từ khóa
Tài liệu tham khảo
García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge. Springer, Berlin (1994). The full text of this book is available online in http://mat21.etsii.upm.es/mbs/
Géradin, M., Rixen, D.: Parametrization of finite rotations in computational dynamics: a review. Rev. Eur. Élém. Finis 4, 497–553 (1995)
Angeles, J.: Fundamentals of Robotic Mechanical Systems, 2nd edn. Springer, New York (2003)
García de Jalón, J., Serna, M.A., Avilés, R.: A computer method for kinematic analysis of lower-pair mechanisms. First part: velocities and accelerations. Mech. Mach. Theory 16, 543–556 (1981)
García de Jalón, J., Serna, M.A., Avilés, R.: A computer method for kinematic analysis of lower-pair mechanisms. Second part: position problems. Mech. Mach. Theory 16, 557–566 (1981)
Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates. Mech. Mach. Theory 17, 397–403 (1982)
Wehage, R., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained mechanical systems. J. Mech. Des. 104, 247–255 (1982)
García de Jalón, J., Serna, M.A., Viadero, F., Flaquer, J.: A simple numerical method for the kinematic analysis of spatial mechanisms. ASME J. Mech. Des. 104, 78–82 (1982)
Tárrago, J.A., Serna, M.A., Bastero, C., García de Jalón, J.: A computer method for the finite displacement problem in spatial mechanisms. ASME J. Mech. Des. 104, 869–874 (1982)
Vilallonga, G., Unda, J., García de Jalón, J.: Numerical kinematic analysis of three-dimensional mechanisms using a natural system of Lagrangian coordinates. In: 18th ASME Biennial Mechanisms Conference, Cambridge, USA (1984)
García de Jalón, J., Unda, J., Avello, Al.: Natural coordinates for the computer analysis of three-dimensional multibody systems. Comput. Methods Appl. Mech. Eng. 56, 309–327 (1986)
von Schwerin, R.: Multibody System Simulation. Numerical Methods, Algorithms and Software. Springer, Berlin (1999)
Kraus, Ch.: Efficient object-oriented modeling, simulation and parameter estimation for biomechanical problems. Inaugural-Dissertation, Interdisciplinary Center of Scientific Computing (IWR), University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/7043/ (2006)
Kraus, C., Wincker, M., Bock, H.-G.: Modeling mechanical dae using natural coordinates. Math. Comput. Model. Dyn. Sys. 7, 145–158 (2001)
Kraus, C., Bock, H.-G., Mutschler, H.: Parameter estimation for biomechanical models based on a special form of natural coordinates. Multibody Sys. Dyn. 13, 101–111 (2005)
Rodríguez, J.I., Jiménez, J.M., Funes, F.J., García de Jalón, J.: Recursive and residual algorithms for the efficient numerical integration of multi-body systems. Multibody Syst. Dyn. 11, 295–320 (2004)
Cardenal, J., Cuadrado, J., Morer, P., Bayo, E.: A multi-index variable time step method for the dynamic simulation of multibody systems. Int. J. Numer. Methods Eng. 44, 1579–1598 (1999)
Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4, 55–73 (2000)
Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection method for constrained multibody dynamics. J. Nonlinear Dyn. 9, 113–130 (1996)
Arponen, T.: Regularization of constraint singularities in multibody systems. Multibody Syst. Dyn. 6, 355–375 (2001)
Cossalter, V., Lot, R.: A motorcycle multi-body model for real time simulations based on the natural coordinates approach. Veh. Syst. Dyn. 37, 423–447 (2002)
Stejskal, V., Valasek, M.: Kinematics and Dynamics of Machinery. Dekker, New York (1996)
García de Jalón, J., Shimizu, N., Gómez, D.: Natural coordinates for teaching multibody systems with Matlab. Paper DETC2007-35358, ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, USA, 4–7 September 2007
Pennestrì, E., Vita, L.: Multibody dynamics in advanced education. In: Ambrósio, J.A.C. (ed.) Advances in Computational Multibody Systems, pp. 345–370. Kluwer, Dordrecht (2006)
Álvarez, G., Gutiérrez, A., Serrano, N., Urban, P., García de Jalón, J.: Computer data acquisition, analysis and visualization of elite athletes motion. In: VIth International Symposium on Computer Simulation in Biomechanics, Paris (1993)
Celigüeta, J.T.: Multibody simulation of human body motion in sports. In: Proceedings of the XIV International Symposium on Biomechanics in Sports FMH, Technical University of Lisbon, pp. 81–94 (1996)
Silva, M.P.T., Ambrosio, J.A.C.: Pedestrian impact and run over using a multibody simulation tool. Int. J. Crashworthiness 4, 261–271 (1999)
Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8, 219–239 (2002)
Czaplicki, A., Silva, M.P.T., Ambrosio, J.C.: Biomechanical modeling for the whole body motion using natural coordinates. J. Theor. Appl. Mech. 42, 927–944 (2004)
Silva, M.P.T., Ambrosio, J.A.C.: Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data. Gait Posture 19, 35–49 (2004)
Czaplicki, A., Silva, M.P.T., Ambrosio, J.A.C., Jesus, O., Abrantes, J.: Estimation of the muscle force distribution in ballistic motion based on a multibody methodology. Comput. Methods Biomech. Biomed. Eng. 9, 45–54 (2006)
Seemann, W., Stelzner, G., Simonidis, C.: Correction of motion capture data with respect to kinematic data consistency for inverse dynamic analysis. Paper DETC2005-84964, ASME International Design Engineering Tecnical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, 24–28 September 2005
Boulic, R., Varona, J., Unzueta, L., Peinado, M., Suescun, A., Perales, F.: Evaluation of on-line and numeric inverse kinematics approaches driven by partial video input. Virtual Real. 10, 48–61 (2006)
STT Systems Engineering: http://www.simtechniques.com/02_index.asp
Avilés, R., Ajuria, M.B., García de Jalón, J.: A fairly general method for the optimum synthesis of planar mechanisms. Mech. Mach. Theory 20, 321–328 (1985)
Vallejo, J., Avilés, R., Hernández, A., Amezua, E.: Nonlinear optimization of planar linkages for kinematics syntheses. Mech. Mach. Theory 30, 501–518 (1995)
Sancibrian, R., Viadero, F., García, P., Fernández, A.: Gradient-based optimization of path synthesis problems in planar mechanisms. Mech. Mach. Theory 39, 839–856 (2004)
Alba, J.A., Doblaré, M., Gracia, L.: A simple method for the synthesis of 2D and 3D mechanisms with kinematic constraints. Mech. Mach. Theory 35, 645–674 (2000)
Jiménez, J.M., Álvarez, G., Cardenal, J., Cuadrado, J.: A simple and general method for kinematic synthesis of spatial mechanisms. Mech. Mach. Theory 32, 323–341 (1997)
Collard, J.-F., Fisette, P., Duysinx, P.: Optimal synthesis of mechanisms using time-varying dimensions and natural coordinates. In: 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 30 May–3 June 2005
Da Lio, M., Cossalter, V., Lot, R.: On the use of natural coordinates in optimal synthesis of mechanisms. Mech. Mach. Theory 35, 1367–1389 (2000)
Cuadrado, J., Cardenal, J., García de Jalón, J.: Flexible mechanisms through natural coordinates and component synthesis: an approach fully compatible with the rigid case. Int. J. Numer. Methods Eng. 39, 3535–3551 (1996)
Avello, Al., García de Jalón, J., Bayo, E.: Dynamics of flexible multibody systems with Cartesian coordinates and large displacements theory. Int. J. Numer. Methods Eng. 32, 1543–1563 (1991)
Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1998)