Tumor mutational burden quantification from targeted gene panels: major advancements and challenges

Journal for ImmunoTherapy of Cancer - Tập 7 Số 1 - 2019
Laura Fancello1,2, Sara Gandini1,2, Pier Giuseppe Pelicci1,3,2,4, Luca Mazzarella1,5,2
1Department of Experimental Oncology
2IEO European Institute of Oncology, IRCCS
3Department of Oncology and Hemato-Oncology
4University of Milan
5Division of Early Drug Development

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Ri H, et al. Durvalumab after chemoradiotherapy in stage III non-small cell lung cancer. N Engl J Med. 2017;377:1919–29.

Borghaei H, Paz-Ares L, Horn L. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

Hodi F, O’Day S, McDermott D, Weber R, Sosman J, Haanen J, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

Motzer R, Tannir N, McDermott D, Frontera O, Melichar B, Choueiri T, et al. Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

Rosenberg JE, Hoff J, Powles T, Van Der HMS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016. https://doi.org/10.1016/S0140-6736(16)00561-4 .

Li X, Song W, Shao C, Shi Y, Han W. Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Mol Immunol. 2019. https://doi.org/10.1038/s41423-018-0086-z .

Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10(459):1–15.

Campesato LF, Barroso-sousa R, Jimenez L, Camargo AA. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. Oncotarget. 2015;6(33):34221.

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non – small cell lung cancer. Science. 2015;348(6230):124–9.

Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line Nivolumab in stage IV or recurrent non–small-cell lung Cancer. N Engl J Med. 2017. https://doi.org/10.1056/NEJMoa1613493 .

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11.

Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X, et al. Targeted Next Generation Sequencing Identi fi es Markers of Response to PD-1 Blockade. 2016;959–968.

Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim DW, Algazi A, Johnson DB, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature. 2018;553(7688):347–50.

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. 2014;2189–2199.

Powles T, Durán I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018. https://doi.org/10.1016/S0140-6736(17)33297-X .

Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.

Le DT, Uram JN, H W, R BB, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. NEJM. 2015:2509–20.

Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017. https://doi.org/10.1158/1535-7163.MCT-17-0386 .

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

Quiroga D, Lyerly HK, Morse MA. Deficient mismatch repair and the role of immunotherapy in metastatic colorectal cancer. Curr Treat Options in Oncol. 2016. https://doi.org/10.1007/s11864-016-0414-4 .

Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):1–14.

Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015. https://doi.org/10.1016/j.cell.2014.12.033 .

Zhang J, Mardis ER, Maher CA. Genome analysis INTEGRATE-neo : a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics. 2017; doi: https://doi.org/10.1093/bioinformatics/btw674 .

Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–6.

Hellmann M, Nathanson T, Rizvi H. Genomic features of response to combination immunotherapy in patients with advanced non- small-cell lung cancer. Cancer Cell. 2018;33:843–52.

Kowanetz M. Tumor mutation load assessed by FoundationOne (FM1) is associated with improved efficacy of atezolizumab (atezo) in patients with advanced NSCLC. Ann Oncol. 2016;27(6):15–42.

Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et al. First-line Nivolumab plus Ipilimumab in advanced non–small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol. 2019. https://doi.org/10.1200/JCO.18.01042 .

Galsky M, Saci A, Szabo P, Azrilevich A, Horak C, Lambert A, et al. Impact of tumor mutation burden on Nivolumab efficacy in second-line urothelial carcinoma patients: exploratory analysis of the phase II CheckMate 275. Ann Oncol. 2017. https://doi.org/10.1093/annonc/mdx371 .

Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–98.

Birkbak NJ, Kochupurakkal B, Izarzugaza JMG, Eklund AC, Li Y, Liu J, et al. Tumor mutation burden forecasts outcome in ovarian cancer with BRCA1 or BRCA2 mutations. PLoS One. 2013;8(11).

Thomas A, Routh ED, Pullikuth A, Jin G, Su J, Chou JW, et al. Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology. 2018;7(10):1–12. https://doi.org/10.1080/2162402X.2018.1490854 .

Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of basal cell carcinomas by whole-exome sequencing. J Invest Dermatol. 2014. https://doi.org/10.1038/jid.2013.276 .

Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D, et al. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med. 2016. https://doi.org/10.1186/s13073-016-0333-9 .

Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar A-L, et al. Size matters: dissecting key parameters for panel-based tumor mutational burden (TMB) analysis. Int J Cancer. 2019. https://doi.org/10.1002/ijc.31878 .

Qiu P, Poehlein CH, Marton MJ, Laterza OF, Levitan D. Measuring tumor mutational burden (TMB) in plasma from mCRPC patients using two commercial NGS assays. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-37128-y .

Nguyen A, Garner C, Reddy S, Sanborn J, Charles BS, Elisabeth ST, et al. Three-fold overestimation of tumor mutation burden using 248 gene panel versus whole exome. J Clin Oncol. 2018. https://doi.org/10.1200/JCO.2018.36.15_suppl.12117 .

Panda A, Betigeri A, Subramanian K, Ross JS, Pavlick DC, Ali S, et al. Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors. JCO Precis Oncol. 2017. https://doi.org/10.1200/PO.17.00146 .

Endris V, Buchhalter I, Allgäuer M, Rempel E, Lier A, Volckmar A-L, et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in-silico and real-life analysis of three larger gene panels. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32002 .

Zhang S, So AS, Kaplan S, KK M. Comprehensive evaluation of Illumina’s TruSight® tumor 170 panel to estimate tumor mutational burden. Cancer Res. 2017. https://doi.org/10.1158/1538-7445.AM2017-5358 .

Chaudhary R, Quagliata L, Martin JP, Alborelli I, Cyanam D, Mittal V, et al. A scalable solution for tumor mutational burden from formalin- fixed , paraffin-embedded samples using the Oncomine tumor mutation load assay. TLCR. 2018:1–15.

Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41.

Samstein RM, Lee C, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019. https://doi.org/10.1038/s41588-018-0312-8 .

Khagi Y, Goodman AM, Daniels GA, Patel SP, Sacco AG, Randall JM, et al. Hypermutated Circulating Tumor DNA : Correlation with Response to Checkpoint Inhibitor – Based Immunotherapy. 2017;5729–5737.

Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, et al. Tumor mutational burden and efficacy of Nivolumab monotherapy and in combination with Ipilimumab in small-cell lung Cancer. Cancer Cell. 2018. https://doi.org/10.1016/j.ccell.2018.04.001 .

Qiu P, Pang L, Arreaza G, Maguire M, Chang KCN, Marton MJ, et al. Data interoperability of whole exome sequencing ( WES ) based mutational burden estimates from different laboratories. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17050651 .

Mola N, Schu M, Stiegelmeyer S, Jones W, Weigman V. Tumor mutational burden: guidelines for derivation and robustness of measurement. Cancer Res. 2018. https://doi.org/10.1158/1538-7445.AM2018-2250 .

Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

Wang Z, Dua J, Cai S, Han M, Dong H, Zhao J, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non–small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol. 2019:1–7.

Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus Ipilimumab in lung Cancer with a high tumor mutational burden. N Engl J Med. 2018. https://doi.org/10.1056/NEJMoa1801946 .

Ramalingam SS. Tumor mutational burden (TMB) as a biomarker for clinical benefit from dual immune checkpoint blockade with nivolumab (nivo) + ipilimumab (ipi) in first-line (1L) non-small cell lung cancer (NSCLC): identification of TMB cutoff from CheckMate 568. Cancer Res. 2018. https://doi.org/10.1158/1538-7445.AM2018-CT078 .

Chen Y, Zhang Y, Lv J, Li Y, Wang Y, He Q, et al. Genomic analysis of tumor microenvironment immune types across 14 solid Cancer types : immunotherapeutic implications. Theranostics. 2017;7(14).

Fabrizio D, Chen S-J, Xie M, Chen W, Quinn KJ, Zhao C, et al. In silico assessment of variation in TMB quantification across diagnostic platforms: phase 1 of the friends of Cancer research harmonization project. J Immunother Cancer. 2018. https://doi.org/10.1186/s40425-018-0434-7 .

Stenzinger A, Allen J, Maas J, Stewart M, Merino D, Dietel M. Tumor mutational burden (TMB) standardization initiative: establishing a consistent methodology for TMB measurement in clinical samples. Ann Oncol. 2018. https://doi.org/10.1093/annonc/mdy269.139 .

Murtaza M, Dawson SJ, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013. https://doi.org/10.1038/nature12065 .

Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun. 2015. https://doi.org/10.1038/ncomms9760 .

Butler TM, Johnson-Camacho K, Peto M, Wang NJ, Macey TA, Korkola JE, et al. Exome sequencing of cell-free DNA from metastatic cancer patients identifies clinically actionable mutations distinct from primary disease. PLoS One. 2015;10(8):1–14.

Klevebring D, Neiman M, Sundling S, Eriksson L, Ramqvist ED, Celebioglu F, et al. Evaluation of exome sequencing to estimate tumor burden in plasma. PLoS One. 2014;9(8).

Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem. 2013. https://doi.org/10.1373/clinchem.2012.196014 .

Koeppel F, Blanchard S, Marcaillou C, Martin E, Rouleau E, Solary E, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0188174 .

Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(September):1441.

Quinn K, Helman E, Nance T, Artieri C, Yen J, Zhao J, et al. Development and analytical validation of a plasma-based tumor mutational burden (TMB) score from next-generation sequencing panels. Ann Oncol. 2018; doi: 0.1093/annonc/mdy269.

Lyu G, Yeh Y, Yeh Y, Wang Y. Mutation load estimation model as a predictor of the response to cancer immunotherapy. npj Genomic Med. 2018. https://doi.org/10.1038/s41525-018-0051-x .

Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2018. https://doi.org/10.1093/annonc/mdy495/5160130%0A .

McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint bloackade. Science (80- ). 2016;351(6280):1463–70.

Kazmi SM. A retrospective analysis to evaluate prevalence and correlation between PD-L1 score and tumor mutational burden (TMB) levels in patients with solid tumor malignancies. Ann Oncol. 2017;28(Suppl 11):xi6–xi29.

Salem ME, Puccini A, Grothey A, Raghavan D, Goldberg RM, Xiu J, et al. Landscape of Tumor Mutation Load , Mismatch Repair Deficiency, and PD-L1 Expression in a Large Patient Cohort of Gastrointestinal Cancers. 2018;805–813.

Morrison C, Pabla S, Conroy JM, Nesline MK, Glenn ST, Dressman D, et al. Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden. J Immunother Cancer. 2018;6(1):1–12.

Xiao W, Du N, Huang T, Guo J, Mo X, Yuan T, et al. TP53 mutation as potential negative predictor for response of anti-CTLA-4 therapy in metastatic melanoma. EBioMedicine. 2018. https://doi.org/10.1016/j.ebiom.2018.05.019 .

Ock C-Y, Hwang J-E, Keam B, Kim S-B, Shim J-J, Jang H-J, et al. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-01018-0 .

Kirchhoff T, Ferguson R, Simpson D, Kazlow E, Martinez C, Vogelsang M, et al. Germline determinants of immune related adverse events (irAEs) in melanoma immunotherapy response. Ann Oncol. 2017. https://doi.org/10.1093/annonc/mdx376 .

Hasan Ali O, Berner F, Bomze D, Fässler M, Diem S, Cozzio A, et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur J Cancer. 2019;107:8–14.

Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017. https://doi.org/10.1038/nm.4333 .

Sun JX, He Y, Sanford E, Montesion M, Frampton GM, Vignot S, et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Comput Biol. 2018. https://doi.org/10.1371/journal.pcbi.1005965 .