Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion

Nature Medicine - Tập 8 Số 8 - Trang 793-800 - 2002
Haidong Dong1, Scott E. Strome2, Diva R. Salomão3, Hideto Tamura1, Fumiya Hirano1, Dallas B. Flies1, Patrick C. Roche3, Jun Lü1, Gefeng Zhu1, Koji Tamada1, Vanda A. Lennon3, Esteban Celis1, Lieping Chen1
1Department of Immunology, Mayo Clinic, Rochester, Minnesota USA
2Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
3Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chambers, C.A. & Allison, J.P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

Chen, L., Linsley, P.S. & Hellstrom, K.E. Costimulation of T cells for tumor immunity. Immunol. Today 14, 483–486 (1993).

Boise, L.H., Noel, P.J. & Thompson, C.B. CD28 and apoptosis. Curr. Opin. Immunol. 7, 620–625 (1995).

Watts, T.H. & DeBenedette, M.A. T cell co-stimulatory molecules other than CD28. Curr. Opin. Immunol. 11, 286–293 (1999).

Noel, P.J., Boise, L.H., Green, J.M. & Thompson, C.B. CD28 costimulation prevents cell death during primary T cell activation. J. Immunol. 157, 636–642 (1996).

Hurtado, J.C., Kim, Y.J. & Kwon, B.S. Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J. Immunol. 158, 2600–2609 (1997).

Takahashi, C., Mittler, R.S. & Vella, A.T. 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol. 162, 5037–5040 (1999).

Rogers, P.R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes bcl-xl and bcl-2 expression and is essential for long-term survival of CD4+ T cells. Immunity 15, 445–455 (2001).

Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med. 5, 1365–1369 (1999).

Tamura, H. et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 97, 1809–1816 (2001).

Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif–carrying immunoreceptor. Immunity 11, 141–151 (1999).

Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor–deficient mice. Science 291, 319–322 (2001).

Rivoltini, L. et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res. 55, 3149–3157 (1995).

Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

Jeremias, I., Herr, I., Boehler, T. & Debatin, K.M. TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur. J. Immunol. 28, 143–152 (1998).

Zhao, S. et al. Functional expression of TRAIL by lymphoid and myeloid tumour cells. Br. J. Haematol. 106, 827–832 (1999).

Lu, J. & Celis, E. Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res. 60, 5223–5227 (2000).

Georgescu, L., Vakkalanka, R.K. Elkon, K.B. & Crow, M.K. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J. Clin. Invest. 100, 2622–2633 (1997).

Sykulev, Y. et al. High-affinity reactions between antigen-specific T-cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins. Proc. Natl. Acad. Sci. USA 91, 11487–11491 (1994).

Tamada, K., Tamura, H., Flies, D.B., Fu, Y.X., Pease, L.R., Blazar, B.R. & Chen, L. Blockade of LIGHT/LTβ and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease. J. Clin. Invest. 109, 549–557 (2002).

Chen, L., McGowan, P., Ashe, S., Johnston, J., Li, Y., Hellstrom, I. & Hellstrom, K.E. Tumor immunogenicity determines the effect of B7 costimulation on T cell–mediated tumor immunity. J. Exp. Med. 179, 523–532 (1994).

Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).

Griffith, T.S, Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand–induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

O'Connell, J., Bennett, M.W., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. Fas counter-attack: the best form of tumor defense? Nature Med. 5, 267–268 (1999).

Strand, S. & Galle, P.R. Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications. Mol. Med. Today 4, 63–68 (1998).

Chappell, D.B, Zaks, T.Z., Rosenberg, S.A. & Restifo, N.P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res. 59, 59–62 (1999).

Arai, H., Gordon, D., Nabel, E.G. & Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA. 94, 13862–13867 (1997).

Nakashima, M., Sonoda, K. & Watanabe, K. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen, RCAS1. Nature Med. 5, 938–942 (1999).

Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A. & Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

Finger, L.R. et al. G The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene 197, 177–187 (1997).

Chapoval, A.I., Zhu, G. & Chen, L. Immunoglobulin fusion protein as a tool for evaluation of T-cell costimulatory molecules. Methods Mol. Med. 45, 247–255 (2000).

Kobayashi, H., Wood, M., Song, Y., Appella, E. & Celis, E. Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res. 60, 5228–5236 (2000).

Yu, Z., Kryzer, T.J., Griesmann, G.E., Kim, K.K., Benarroch, E., & Lennon, V.A. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann. Neurol. 49, 146–154 (2001).