Tuberculosis chemotherapy: current drug delivery approaches
Tóm tắt
Tuberculosis is a leading killer of young adults worldwide and the global scourge of multi-drug resistant tuberculosis is reaching epidemic proportions. It is endemic in most developing countries and resurgent in developed and developing countries with high rates of human immunodeficiency virus infection. This article reviews the current situation in terms of drug delivery approaches for tuberculosis chemotherapy. A number of novel implant-, microparticulate-, and various other carrier-based drug delivery systems incorporating the principal anti-tuberculosis agents have been fabricated that either target the site of tuberculosis infection or reduce the dosing frequency with the aim of improving patient outcomes. These developments in drug delivery represent attractive options with significant merit, however, there is a requisite to manufacture an oral system, which directly addresses issues of unacceptable rifampicin bioavailability in fixed-dose combinations. This is fostered by the need to deliver medications to patients more efficiently and with fewer side effects, especially in developing countries. The fabrication of a polymeric once-daily oral multiparticulate fixed-dose combination of the principal anti-tuberculosis drugs, which attains segregated delivery of rifampicin and isoniazid for improved rifampicin bioavailability, could be a step in the right direction in addressing issues of treatment failure due to patient non-compliance.
Tài liệu tham khảo
Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C: Tuberculosis (Seminar). The Lancet 2003,362(9387):887–899.
Singh S: Tuberculosis. Current Anaesthesia & Critical Care (Focus on: Tropical Diseases) 2004,15(3):165–171.
World Health Organization – Geneva 2003: Treatment of TB: Guidelines for National Programmes.
Katzung BG: Basic & Clinical Pharmacology. 8th edition. San Francisco, USA: McGraw-Hill; 2001.
Williams DA, Lemke TL: Foye's Principles of Medicinal Chemistry. 5th edition. Philadelphia, USA: Lippincott, Williams and Wilkins; 2002.
Comstock GW, Livesay VT, Woolpert SF: The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 1974, 99:131–138.
Sutherland I: Recent studies in the epidemiology of tuberculosis, based on the risk of being infected with tubercle bacilli. Adv Tuberc Res 1976, 19:1–63.
Fox W, Ellard GA, Mitchison DA: Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 1999, 3:S231-S279.
Iseman MD: Treatment of multidrug-resistant tuberculosis. N Engl J Med 1993, 329:784–791.
World Health Organization. Communicable Diseases Cluster: Fixed-dose combination tablets for the treatment of tuberculosis. 1999.
Gibbon C, Editor: South African Medicines Formulary. 6th edition. Medical Association of South Africa in co-operation with the Pharmaceutical Society of South Africa; 2004.
Heifets LB, Lindholm-Levy P: Comparison of bactericidal activities of streptomycin, amikacin, kanamycin, and capreomycin against Mycobacterium avium and M tuberculosis . Antimicrob Agents Chemother 1989, 33:1298–1301.
Garg RK: Classic diseases revisited: Tuberculosis of the central nervous system (Review). Postgrad Med J 1999, 75:133–140.
Mitchison DA: Mechanism of drug action in short-course chemotherapy. Bulletin International Union Against Tuberculosis 1985, 65:30–7.
Iseman MD, Madsen LA: Drug-resistant tuberculosis. Clin Chest Med 1989, 10:341–53.
Rattan A, Kalia A, Ahmad N: Multidrug-Resistant Mycobacterium tuberculosis : Molecular Perspectives. [http://www.cdc.gov/ncidod/eid/vol4no2/rattang.htm] All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India;
Parsons LM, Salfinger M, Clobridge A, Dormandy J, Mirabello L, Polletta VL, Sanic A, Sinyavskiy O, Larsen SC, Driscoll J, Zickas G, Taber HW: Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob Agents Chemother 2005, 49:2218–2225.
Somoskovi A, Parsons LM, Salfinger M: The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis . Respiratory Research 2001, 2:164–168.
Lund W, Editor: The Pharmaceutical Codex: Principles and Practice of Pharmaceutics. 12th edition. London, UK: The Pharmaceutical Press; 1994.
Jindani A, Aber VR, Edwards EA, Mitchison DA: The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 1980, 12:939–949.
Sanders WE Jr, Hartwig C, Schneider N, Cacciatore R, Valdez H: Activity of amikacin against mycobacteria in vitro and in murine tuberculosis. Tubercle 1982, 63:201–208.
Peloquin CA: Pharmacology of the antimycobacterial drugs. Med Clin North Am 1993, 77:1253–1262.
Blaser J, Konig C, Fatio R, Follath F, Cometta A, Glauser M: Multicenter quality control study of amikacin assay for monitoring once-daily dosing regimens. Ther Drug Monit 1995, 17:133–136.
Kohno S, Koga H, Kaku M, Maesaki S, Hara K: Prospective comparative study of ofloxacin or ethambutol for the treatment of pulmonary tuberculosis. Chest 1992, 102:1815–1818.
Kennedy N, Berger L, Curram J: Randomized controlled trial of a drug regimen that includes ciprofloxacin for the treatment of pulmonary tuberculosis. Clin Infect Dis 1996, 22:827–833.
Rastogi N, Goh KS: In vitro activity of the new difluorinated quinolone sparfloxacin (AT-4140) against Mycobacterium tuberculosis compared with activities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1991, 35:1993–1996.
Ji B, Lounis N, Maslo C, Truffot-Pernot C, Bonnafous P, Grosset J: In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis . Antimicrob Agents Chemother 1998, 42:2066–2069.
Bastian I, Portaels F: Multidrug resistant tuberculosis. London, UK: Kluwer Academic Publishers; 2000:165.
Jagannath C, Reddy VM, Kailasam S, O'Sullivan JF, Gangadharam PR: Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis : in vitro intracellular and in vivo studies. Am J Respir Crit Care Med 1995, 151:1083–1086.
Reddy VM, Nadadhur G, Daneluzzi D, O'Sullivan JF, Gangadharam PR: Anti tuberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrob Agents Chemother 1996, 40:633–636.
Cynamon MN, Palmer GS: In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis . Antimicrob Agents Chemother 1983, 24:429–431.
Chambers HF, Kocagoz T, Sipit T, Turner J, Hopewell PC: Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis 1998, 26:874–877.
Donald PR, Sirgel FA, Venter A: Early bactericidal activity of amoxicillin in combination with clavulanic acid in patients with sputum smear-positive pulmonary tuberculosis. Scand J Infect Dis 2001, 33:466–469.
Cavalieri SJ, Biehle JR, Sanders WE: Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis . Antimicrob Agents Chemother 1995, 39:1542–1545.
Hoffner SE, Gezelius L, Olsson-Liljequist B: In-vitro activity of fluorinated quinolones and macrolides against drug-resistant Mycobacterium tuberculosis . J Antimicrob Chemother 1997, 40:885–888.
Luna-Herrera , Reddy VM, Daneluzzi D, Gangadharam PRJ: Antituberculosis activity of clarithromycin. Antimicrob Agents Chemother 1995, 39:2692–2695.
Mor N, Esfandiari A: Synergistic activities of clarithromycin and pyrazinamide against Mycobacterium tuberculosis in human macrophages. Antimicrob Agents Chemother 1997, 41:2035–2036.
Mukherjee JS, Rich ML, Socci AR: Programmes and principles in treatment of multidrug-resistant tuberculosis. The Lancet 2004,363(9407):474–481.
Heifets LB, Lindholm-Levy PJ, Flory M: Thiacetazone: in vitro activity against Mycobacterium avium and M tuberculosis . Tubercle 1990, 71:287–291.
Okwera A, Whalen C, Byekwaso F: Randomised trial of thiacetazone and rifampicin-containing regimens for pulmonary tuberculosis in HIV-infected Ugandans: the Makerere University-Case Western University Research Collaboration. The Lancet 1994, 344:1323–1328.
Prabakaran D, Singh P, Jaganathan KS, Vyas SP: Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs. J Contr Rel 2004,95(2):239–248.
Chen Y-J: The solubility enhancement and the stability assessment of rifampicin, isoniazid and pyrazinamide in aqueous media. In Master of Science Thesis. Rhodes University, South Africa; 2000.
Kochi A, Vareldzis B, Styblo K: Multi-drug resistant TB and its control. Res Microbiol 1993, 144:104–110.
Agrawal S, Kaur KJ, Singh I, Bhade SR, Kaul CL, Panchagnula R: Assessment of bioequivalence of rifampicin, isoniazid and pyrazinamide in a four drug fixed dose combination with separate formulations at the same dose level. Int J Pharm 2002,233(1–2):169–177.
Edlin BR, Tokars JI, Grico MH, Crawford JT, Williams J, Sordillo EM, Ong KR, Kilburn JO, Dooley SW, Castro KG: An outbreak of MDR TB among hospitalized patients with the acquired immunodeficiency syndrome. New Engl J Med 1992, 326:1514–1521.
Fischl MA, Uttamchandani RB, Daikos GL, Poblete RB, Moreno JN, Reyes RR, Boota AM, Thompson LM, Cleary TJ, Lai S: An outbreak of TB caused by multiple-drug-resistant tubercle bacilli among patients with HIV infection. Ann Intern Med 1992, 117:177–183.
Falk R, Randolph TW, Meyer JD, Kelly RM, Manning MC: Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J Contr Rel 1997,44(1):77–85.
Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B: Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 2003, 52:981–986.
Kailasam S, Daneluzzi D, Gangadharam PRJ: Maintenance of therapeutically active levels of isoniazid for prolonged periods in rabbits after a single implant of biodegradable polymer. Tuber Lung Dis 1994,75(5):361–365.
Dutt M, Khuller GK: Sustained release of isoniazid from a single injectable dose of poly (DL-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int J Antimicrob Agents 2001, 17:115–122.
Dutt M, Khuller GK: Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. J Antimicrob Chemother 2001,47(6):829–35.
Ain Q, Sharma S, Garg SK, Khuller GK: Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s). Int J Pharm 2002,239(1–2):37–46.
Mathur IS, Gupta HP, Srivastava SK, Singh S, Madhu K, Khanna NM: Evaluation of subdermal biodegradable implants incorporating rifampicin as a method of drug delivery in experimental tuberculosis of guinea pigs. J Med Microbiol 1985,20(3):387–392.
Barik BB, Gupta BK, Pal M: Preparation and evaluation of rifampicin microspheres. The Eastern Pharmacist 1993, 36:173–175.
Denkbas EB, Kaitian X, Tuncel A, Piskin E: Rifampicin carrying poly (-lactide) microspheres: loading and release. J Biomater Sci Polym Ed 1995,6(9):815–825.
Nakhare S, Vyas SP: Prolonged release of rifampicin from internal phase of multiple w/o/w emulsion systems. Indian J Pharm Sci 1995,57(2):71–77.
Khopade AJ, Mahadik KR, Jain NK: Enhanced brain uptake of rifampicin from w/o/w multiple emulsions via nasal route. Indian J Pharm Sci 1996,58(2):83–85.
Amar HO, Khalil RM: Preparation and evaluation of sustained release solid dispersions of drugs with Eudragit polymers. Drug Dev Ind Pharm 1997,23(11):1043–1054.
Deol P, Khuller KG: Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochem Biophys Acta 1997,1334(2–3):161–172.
Schierholz JM: Physico-chemical properties of a rifampicin releasing polydimethylsiloxane shunt. Biomaterials 1997,18(8):635–641.
Uppadhyay AK, Omray LK, Khopade AJ, Jam NK: Studies on a reverse micellelamellar phase transition based depot preparation of rifampicin. Pharmazie 1997,52(2):961–962.
Sreenivasa Rao B, Ramana Murthy KV: Studies on rifampicin release from ethylcellulose coated nonpareil beads. Int J Pharm 2002,231(1):97–106.
Makino K, Nakajima T, Shikamura M, Ito F, Ando S, Kochi C, Inagawa H, Soma G, Terada H: Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf, B: Biointerfaces 2004, 36:35–42.
Barrow EL, Winchester GA, Staas JK, Quenelle DC, Barrow WW: Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis -infected macrophages. Antimicrob Agents Chemother 1998, 42:2682–2689.
Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB: Nanoparticles as antituberculosis drugs carriers: effect on activity against mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanopart Res 2000, 2:165–171.
Sharma R, Saxena D, Dwivedi AK, Misra A: Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res 2001, 18:1405–1410.
Ahsan F, Rivas IP, Khan MA, Torres Suarez AI: Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Contemp Relig 2002, 79:29–40.
Zhou H, Zhang Y, Biggs DL, Manning MC, Randolph TW, Christians U, Hybertson BM, Ng K: Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages. J Contr Rel 2005,107(2):288–299.
Suarez S, O'Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, Hickey AJ: Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother 2001, 48:431–434.
O'Hara P, Hickey AJ: Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res 2000, 17:955–961.
Zahoor A, Sharma S, Khuller GK: Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005,26(4):298–303.
Zahoor A, Pandey R, Sharma S, Khuller GK: Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents 2006,27(5):409–416.
Pandey R, Khuller GK: Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 2005,85(4):227–234.
Vyas SP, Kannan ME, Sanyog Jain, Mishra V, Singh P: Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 2004,269(1):37–49.
Gangadharam PR, Geeta N, Hsu YY, Wise DL: Chemotherapy of tuberculosis in mice using single implants of isoniazid and pyrazinamide. Int J Tuberc Lung Dis 1999, 3:515–520.
Blomberg B, Spinaci S, Fourie B, Laing R: The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bull WHO 2001, 79:61–79.
Pillai G, Fourie PB, Padayatchi N, Onyebujoh PC, Mcllleron H, Smith PJ, Gabriels GR: Recent bioequivalence studies on fixed dose combination antituberculosis drug formulations available on the global market. Int J Tuberc Lung Dis 1999, 3:S309-S316.
Panchagnula R, Agrawal S: Biopharmaceutic and pharmacokinetic aspects of variable bioavailability of rifampicin. Int J Pharm 2004,271(1–2):1–4.
Coupe AJ, Davis SS, Wilding IR: Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res 1991,8(3):360–364.
Shishoo CJ, Shah SA, Rathod IS, Savale SS, Vora MJ: Impaired bioavailability of rifampicin in presence of isoniazid from fixed dose combination (FDC) formulation. Int J Pharm 2001, 228:53–67.
Digenis GA: The in vivo behavior of multiparticulate versus single unit dosage formulations. In Multipaticulate Oral Drug Delivery. Edited by: Ghebre-Sellassie I. New York, USA: Marcel Dekker, Inc; 1994:333–355.
Laing R, Fourie B, Ellard G, Sesay M, Spinaci S, Blomberg B, Bryant D: Fixed-dose combination tablets for the treatment of tuberculosis. In Report of an informal meeting held in Geneva, Tuesday, 27 April 1999. World Health Organization, Geneva, WHO/CDS/CPC/TB/99.267;
World Health Organization: Stop TB: Stop TB: Frequently asked questions about the 4-drug fixed-dose combination tablet recommended by the World Health Organization for treating tuberculosis. Geneva: WHO, September WHO/CDS/STB/2002.18; 2002.
Singh S, Mariappan TT, Sharda N, Chakraborti AK: The reason for an increase in decomposition of rifampicin in the presence of isoniazid under acid conditions. Pharm Pharmacol Comm 2000,6(11):405–410.
Singh S, Mariappan TT, Sharda N, Singh B: Degradation of rifampicin, isoniazid and pyrazinamide from prepared mixtures and marketed single and combination products under acid conditions. Pharm Pharmacol Comm 2000,6(11):491–494.
Mohan B, Sharda N, Singh S: Evaluation of the recently reported USP gradient HPLC method for analysis of anti-tuberculosis drugs for its ability to resolve degradation products of rifampicin. J Pharm Biomed Anal 2003,31(3):607–612.
Mariappan TT, Jindal KC, Singh S: Overestimation of rifampicin during colorimetric analysis of anti-tuberculosis products containing isoniazid due to formation of isonicotinyl hydrazone. J Pharmaceut Biomed Anal 2004,36(4):905–908.
Sankar R, Sharda N, Singh S: Behaviour of decomposition of rifampicin in the presence of isoniazid on the pH range 1–3. Drug Dev Ind Pharm 2003,29(7):733–738.
McMurry J: Organic Chemistry. 4th edition. Pacific Groove, CA, USA: Brooks/Cole; 1996.
Mariappan TT, Singh S: Regional gastrointestinal permeability of rifampicin and isoniazid (alone and their combination) in the rat. Int J Tuberc Lung Dis 2003,7(8):797–803.
Flynn GL: Considerations in controlled release drug delivery system. Pharm Tech 1982, 6:33–39.
Ranade VV, Hollinger MA: Drug Delivery Systems. 2nd edition. CRC Press; 2003.
Sensi P: History of the development of rifampin. Rev Infect Dis 1983,5(Suppl 3):S402–406.
Agrawal S, Ashokraj Y, Bharatam PV, Pillai O, Panchagnula R: Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci 2004,22(2–3):127–144.
Majeed M, Badmaev V, Rajendran R: Use of piperine to increase the bioavailability of nutritional compounds. United States Patent 5536506 1996.
Giannola LI, Giammona G, Alotta R: Pro-drugs of isoniazid: synthesis and diffusion characteristics of acyl derivatives. Pharmazie 1992,47(6):423–5.
Crooks PA, Cynkowski T, Cynkowska G, Guo H, Ashton P: Permeable, water soluble, non-irritating prodrugs of chemotherapeutic agents with oxaalkanoic acids. United States Patent 6765019 2004.
Lippold BC: Oral Controlled Products: Therapeutic and Biopharmacceutic Assessment. Edited by: Gundert-Remy U, Moller H. Wissenschaftlice Verlagsgesellschaft, Stuggart; 1990:39–57.
Pillay V, Fassihi R: In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract: I. Comparison of pH-responsive drug release and associated kinetics. J Contr Rel 1999,59(2):229–242.
Schmidt C, Bodmeier R: A multiparticulate drug-delivery system based on pellets incorporated into congealable polyethylene glycol carrier materials. Int J Pharm 2001,216(1–2):9–16.