Trypsin digestion of core chromatin

Beatrice M. Diaz1, I.O. Walker1
1Biochemistry Department, University of Oxford South Parks Road Oxford OX1 3QU UK

Tóm tắt

Chicken erythrocyte core chromatin was digested with trypsin for 18 h. Five major limit petides were produced with mol. wts, from 10 800 to 8000 which arose from the central regions of each core histone. The basic amino- and carboxyl-terminal regions of each core histone were digested to small peptides having an average size of less than six amino acids. The small basic peptides, 25% by weight of the total histone, dissociated from the complex and could be removed by dialysis. The five major limit peptides remained bound to the DNA and contained all the secondary structure originally present in the native histones. Trypsin digestion decreased the supercoiling of the DNA in the complex and perturbed the tertiary structure of the histones. By contrast, there were no changes in the secondary structure of the large degraded histone fragments. However, when these were dissociated from the DNA, the secondary structure, which is predominantly α-helix, decreased by 50%. It is concluded that DNA binds strongly to the central regions of the core histones via α-helical segments on the polypeptide chains.

Từ khóa


Tài liệu tham khảo

Klug A, Rhodes D, Smith J & Finch JT (1980) Nature287, 509?516.

Finch FT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M & Klug A (1977) Nature629, 29?36.

Pardon JF, Worcester DL, Wooley JC, Cotter RI, Lilley DMJ & Richards BM (1977) Nucl. Acids Res.4, 3199?3214.

Burton DR, Butler MJ, Hyde JE, Phillips D, Skidmore CJ & Walker IO (1978) Nucl. Acids Res.5, 3643?3663.

Lilley DMJ, Pardon JF & Richards DM (1977) Biochemistry16, 2853?2860.

Suau P, Kneale GG, Braddock GW, Baldwin JP & Bradbury EM (1977) Nucl. Acids Res.4, 3769?3786.

Cary PD, Moss T & Bradbury EM (1978) Eur. J. Biochem.89, 475?482.

Whitlock JP & Stein A (1978) J. Biol. Chem.253, 3857?3861.

Shaw BR, Herman TM, Kovacic RT, Beaudrean GS & Van Holde KE (1976) Proc. Natl. Acad. Sci. U.S.A.73, 502?505.

Zubay G & Doty P (1959) J. Mol. Biol.1, 1?21.

Ruiz-Carillo A & Jorcano JL (1979) Biochemistry18, 760?768.

Lee MF, Peacocke AR & Walker IO (1963) Biochim. Biophys. Acta72, 310?316.

Kumar NM & Walker IO (1980) Nucl. Acids Res.16, 3535?3552.

Henson P & Walker IO (1970) Eur. J. Biochem.16, 524?531.

Boublik M, Bradbury EM, Crane-Robinson C & Rattle HWE (1970) Nature New Biol.229, 149?150.

Bundi A & Wütrich K (1979) Biopolymers18, 285?297.

Weintraub H & Van Lente F (1974) Proc. Natl. Acad. Sci. U.S.A.71, 4249?4253.

Sollner-Webb B, Camerin-Otero RD & Felsenfeld G (1976) Cell9, 179?193.

Lilley DMJ & Tatchell K (1977) Nucl. Acids Res.4, 2039?2055.

Bohm L, Briand G, Sautière P & Crane-Robinson C (1981) Eur. J. Biochem.119, 67?74.

Von Holt C, Strickland WN, Brant WF & Strickland MS (1979) FEBS Lett.100, 201?218.

Thomas GJ, Prescott B & Olins DE (1977) Science197, 385?388.

Beaudette NV, Fulmer AW, Okabayashi H & Fasman GD (1981) Biochemistry20, 6526?6535.

Laine B, Kmieck D, Sautière P & Bisert G (1978) Biochimie60, 147?150.

Van Helden P, Strickland WN, Strickland M & Von Holt C (1982) Biochim. Biophys. Acta703, 17?20.

Brant WF & Von Holt C (1974) Eur. J. Biochem.46, 407?417; 419?429.

Delange RJ, Famborough DM, Smith EL & Bonner J (1969) J. Biol. Chem.244, 319?335.

Greenfield N & Fasman GD (1969) Biochemistry8, 4108?4166.

Delange RJ & Smith EL (1975) Ciba Foundation Symp.28, 59?70.

Ohlendorf DH, Anderson WF, Fisher RG, Talceda Y & Matthews BW (1982) Nature (London),298, 718?723.

Pabo CO & Lewis M (1982) Nature (London)298, 443?447.

McKay DB & Steitz TA (1981) Nature (London)290, 744?749.