Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses

Marine Ecology - Tập 38 Số 4 - 2017
Jennifer P. McClain‐Counts1, Amanda W.J. Demopoulos1, Uri S. ten Brink2
1Wetland and Aquatic Research Center U.S. Geological Survey Gainesville FL USA
2Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA

Tóm tắt

AbstractMesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North‐Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co‐occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non‐crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft‐bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth‐specific isotope trends in sources and consumers, and assimilation of 15N‐depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was no direct measure of mesopelagic fishes assimilating chemosynthetic material, detection of infrequent consumption of this food resource may be hindered by the assimilation of isotopically enriched photosynthetic organic matter. By utilizing multiple dietary metrics (e.g. GCA, δ13C, δ15N, MixSIAR), this study better defined the trophic structure of mesopelagic fishes and allowed for insights on feeding, ultimately providing useful baseline information from which to track mesopelagic trophodynamics over time and space.

Từ khóa


Tài liệu tham khảo

10.1017/S0954102093000331

10.1007/s10452-015-9517-4

10.1016/S0967-0645(02)00041-3

10.1016/S0079-6611(99)00017-8

10.3354/meps319001

10.1890/05-0721

10.1016/j.pocean.2015.03.005

Borodulina O. D., 1972, The feeding of mesopelagic predatory fish in the open ocean, Journal of Ichthyology, 12, 692

10.1139/f99-153

R. Brodeur O. Yamamura 2005 North Pacific Marine Science Organization Sidney BC Canada

Brooks J. M., 2008, Investigations of chemosynthetic communities on the lower continental slope of the Gulf of Mexico

10.1126/science.238.4830.1138

10.1016/S0967-0645(00)00143-0

10.1073/pnas.93.20.10844

10.1016/j.pocean.2014.11.003

10.1007/BF01203726

10.1111/j.1365-2664.2009.01620.x

10.1371/journal.pone.0050133

10.1016/j.dsr2.2014.10.011

Clarke T. A., 1982, Feeding habits of stomiatoid fishes from Hawaiian waters, Fishery Bulletin, 80, 287

Clarke K. R., 2006, PRIMER v6: User manual/tutorial

Clarke K. R., 2001, Change in marine communities: An approach to statistical analysis and interpretation

10.1007/s00227-006-0319-z

10.1111/j.1365-2427.2012.02858.x

Deevey G. B., 1977, Copepods of the Sargasso Sea off Bermuda: Species composition, and vertical and seasonal distribution between the surface and 200 m, Bulletin of Marine Science, 27, 256

10.1016/j.dsr2.2010.05.011

10.3354/meps09854

10.4319/lo.2008.53.6.2644

10.4319/lo.1977.22.5.0856

10.3354/meps08421

10.4319/lo.1988.33.5.1182

10.1007/0-387-33745-8

10.1002/rcm.2892

10.3354/meps10168

10.3354/meps286069

10.1016/S1546-5098(08)60229-0

10.1016/0198-0149(89)90051-4

10.1007/s00227-007-0855-1

J. Gjøsaeter K. Kawaguchi 1980 Food and Agriculture Organization of the United Nations Rome

10.1071/MF06157

Herring P., 2002, The biology of the deep ocean: Biology of habitats

10.1016/S0967-0637(01)00003-6

10.1016/j.dsr.2010.05.003

Hopkins T. L., 1975, Net feeding in mesopelagic fishes, Fishery Bulletin US, 73, 908

10.3354/meps005001

Hopkins T. L., 1985, Feeding ecology of four hatchetfishes (Sternoptychidae) in the eastern Gulf of Mexico, Bulletin of Marine Science, 36, 260

Hopkins T. L., 1985, Aspects of the trophic ecology of the mesopelagic fish Lampanyctus alatus (Family Myctophidae) in the eastern Gulf of Mexico, Biological Oceanography, 3, 285

10.3354/meps109143

10.1007/BF00349518

10.3354/meps164037

10.1016/S0079-6611(97)00003-7

10.3354/meps287251

Jardine T. D., 2003, Stable isotopes in aquatic systems: Sample preparation, analysis and interpretation, Canadian Manuscript Report of Fisheries and Aquatic Sciences, 2656, 39

10.1007/s00227-003-1020-0

10.3354/meps09785

Kashkina A. A., 1986, Feeding of fishes on salps (Tunicata, Thaliacea), Journal of Ichthyology, 26, 57

Kawaguchi K., 1982, Biology of myctophid fishes (Family Myctophidae) in the Rockall Trough, Northeastern Atlantic Ocean, Biological Oceanography, 1, 337

Kennicutt M. C., 1992, Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance, Chemical Geology, 101, 293

10.1007/BF00347513

10.3354/meps049027

10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2

10.1201/9781420037449.ch1

10.3354/meps225065

10.1016/S0009-2541(03)00204-3

10.2983/0730-8000(2008)27[153:CPIBHI]2.0.CO;2

10.1016/j.ecss.2013.04.004

10.1111/j.1469-185X.2008.00064.x

10.1034/j.1600-0706.2003.12098.x

10.1139/f63-046

10.1023/A:1011836022232

10.1016/j.dsr.2007.03.005

10.1111/j.1461-0248.2008.01163.x

10.1038/317709a0

10.1146/annurev.es.18.110187.001453

10.1644/11-MAMM-S-158.1

10.1007/s004420000578

10.1046/j.1461-0248.2002.00307.x

10.1139/cjz-2014-0127

10.1046/j.1365-2435.1999.00301.x

10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

10.1890/0012-9658(2003)084[1298:IVITTO]2.0.CO;2

10.1007/s00442-006-0630-x

10.1016/j.fishres.2006.08.020

10.1016/j.dsr.2004.06.008

R Development Core Team. (2013).R: a language and environment for statistical computing. Vienna Austria: The R Foundation for Statistical Computing. ISBN: 3‐900051‐07‐0. Retrieved fromhttp://www.R-project.org

10.1007/BF00392995

10.1016/0079-6611(84)90014-4

Ross S. W., 1995, Life history of juvenile gag, Mycteroperca microlepis, in North Carolina estuaries, Bulletin of Marine Science, 56, 222

10.1016/j.dsr2.2010.05.008

10.1111/j.1600-0633.2007.00289.x

Stock B. C. &Semmens B. X.(2015).MixSIAR GUI user manual version 3.0.https://github.com/brianstock/MixSIAR/.

10.1016/j.dsr.2005.06.011

Sutton T. T., 1996, Species composition, abundance, and vertical distribution of the stomiid (Pisces: Stomiiformes) fish assemblage of the Gulf of Mexico, Bulletin of Marine Science, 59, 530

Sutton T. T., 1998, Pelagic Biogeography ICoPB II. Proceedings of the Second International Conference. IOC Workshop Report No. 142, 353

10.1016/j.dsr2.2007.09.013

10.1002/rcm.2199

10.1016/j.jmarsys.2014.04.007

10.1139/f97-016

10.1371/journal.pone.0116182

10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2

10.1007/s00442-003-1270-z

10.1007/s002270100671

10.1007/BF00397299

10.1046/j.1365-2427.2002.00908.x

10.1007/BF00428663