Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells

Springer Science and Business Media LLC - Tập 3 - Trang 1-14 - 2013
Chung-Il An1, Edward Ganio1, Nobuko Hagiwara1
1Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, USA

Tóm tắt

A sophisticated level of coordinated gene expression is necessary for skeletal muscle fibers to obtain their unique functional identities. We have previously shown that the transcription factor Sox6 plays an essential role in coordinating muscle fiber type differentiation by acting as a transcriptional suppressor of slow fiber-specific genes. Currently, mechanisms regulating the activity of Sox6 in skeletal muscle and how these mechanisms affect the fiber phenotype remain unknown. Yeast two-hybrid screening was used to identify binding partners of Sox6 in muscle. Small interfering RNA (siRNA)-mediated knockdown of one of the Sox6 binding proteins, Trip12, was used to determine its effect on Sox6 activity in C2C12 myotubes using quantitative analysis of fiber type-specific gene expression. We found that the E3 ligase Trip12, a HECT domain E3 ubiquitin ligase, recognizes and polyubiquitinates Sox6. Inhibiting Trip12 or the 26S proteasome activity resulted in an increase in Sox6 protein levels in C2C12 myotubes. This control of Sox6 activity in muscle cells via Trip12 ubiquitination has significant phenotypic outcomes. Knockdown of Trip12 in C2C12 myotubes led to upregulation of Sox6 protein levels and concurrently to a decrease in slow fiber-specific Myh7 expression coupled with an increased expression in fast fiber-specific Myh4. Therefore, regulation of Sox6 cellular levels by the ubiquitin-proteasome system can induce identity-changing alterations in the expression of fiber type-specific genes in muscle cells. Based on our data, we propose that in skeletal muscle, E3 ligases have a significant role in regulating fiber type-specific gene expression, expanding their importance in muscle beyond their well-established role in atrophy.

Tài liệu tham khảo

Baylor SM, Hollingworth S: Intracellular calcium movements during excitation-contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers. J Gen Physiol. 2012, 139: 261-272. 10.1085/jgp.201210773. Schiaffino S, Reggiani C: Fiber types in mammalian skeletal muscles. Physiol Rev. 2011, 91: 1447-1531. 10.1152/physrev.00031.2010. Zierath JR, Hawley JA: Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004, 2: e348-10.1371/journal.pbio.0020348. Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G: Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS One. 2011, 6: e16807-10.1371/journal.pone.0016807. Seene T, Kaasik P, Umnova M: Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training. J Sports Med Phys Fitness. 2009, 49: 410-423. Selsby JT, Morine KJ, Pendrak K, Barton ER, Sweeney HL: Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS One. 2012, 7: e30063-10.1371/journal.pone.0030063. Webster C, Silberstein L, Hays AP, Blau HM: Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988, 52: 503-513. 10.1016/0092-8674(88)90463-1. Schakman O, Gilson H, Thissen JP: Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008, 197: 1-10. 10.1677/JOE-07-0606. An CI, Dong Y, Hagiwara N: Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev Biol. 2011, 11: 59-10.1186/1471-213X-11-59. Hagiwara N, Yeh M, Liu A: Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn. 2007, 236: 2062-2076. 10.1002/dvdy.21223. Hagiwara N, Ma B, Ly A: Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn. 2005, 234: 301-311. 10.1002/dvdy.20535. Quiat D, Voelker KA, Pei J, Grishin NV, Grange RW, Bassel-Duby R, Olson EN: Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci USA. 2011, 108: 10196-10201. 10.1073/pnas.1107413108. Varshavsky A: The ubiquitin system, an immense realm. Annu Rev Biochem. 2012, 81: 167-176. 10.1146/annurev-biochem-051910-094049. Geng F, Wenzel S, Tansey WP: Ubiquitin and proteasomes in transcription. Annu Rev Biochem. 2012, 81: 177-201. 10.1146/annurev-biochem-052110-120012. Glass DJ: Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care. 2010, 13: 225-229. 10.1097/MCO.0b013e32833862df. Cohen-Barak O, Yi Z, Hagiwara N, Monzen K, Komuro I, Brilliant MH: Sox6 regulation of cardiac myocyte development. Nucleic Acids Res. 2003, 31: 5941-5948. 10.1093/nar/gkg807. Cohen-Barak O, Hagiwara N, Arlt MF, Horton JP, Brilliant MH: Cloning, characterization and chromosome mapping of the human SOX6 gene. Gene. 2001, 265: 157-164. 10.1016/S0378-1119(01)00346-8. Park Y, Yoon SK, Yoon JB: The HECT domain of TRIP12 ubiquitinates substrates of the ubiquitin fusion degradation pathway. J Biol Chem. 2009, 284: 1540-1549. Niikura Y, Nonaka T, Imajoh-Ohmi S: Monitoring of caspase-8/FLICE processing and activation upon Fas stimulation with novel antibodies directed against a cleavage site for caspase-8 and its substrate, FLICE-like inhibitory protein (FLIP). J Biochem. 2002, 132: 53-62. 10.1093/oxfordjournals.jbchem.a003198. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: RESEARCH0034- Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64: 5245-5250. 10.1158/0008-5472.CAN-04-0496. Hagiwara N: Sox6, jack of all trades: a versatile regulatory protein in vertebrate development. Dev Dyn. 2011, 240: 1311-1321. 10.1002/dvdy.22639. Iguchi H, Urashima Y, Inagaki Y, Ikeda Y, Okamura M, Tanaka T, Uchida A, Yamamoto TT, Kodama T, Sakai J: SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation. J Biol Chem. 2007, 282: 19052-19061. 10.1074/jbc.M700460200. Kamachi Y, Uchikawa M, Kondoh H: Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 2000, 16: 182-187. 10.1016/S0168-9525(99)01955-1. Lefebvre V, Li P, de Crombrugghe B: A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998, 17: 5718-5733. 10.1093/emboj/17.19.5718. Ohe K, Tamai KT, Parvinen M, Sassone-Corsi P: DAX-1 and SOX6 molecular interplay results in an antagonistic effect in pre-mRNA splicing. Dev Dyn. 2009, 238: 1595-1604. 10.1002/dvdy.21957. Connor F, Wright E, Denny P, Koopman P, Ashworth A: The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 1995, 23: 3365-3372. 10.1093/nar/23.17.3365. Rotin D, Kumar S: Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009, 10: 398-409. 10.1038/nrm2690. Lee JW, Choi HS, Gyuris J, Brent R, Moore DD: Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 1995, 9: 243-254. 10.1210/me.9.2.243. Chen D, Shan J, Zhu WG, Qin J, Gu W: Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature. 2010, 464: 624-627. 10.1038/nature08820. Keppler BR, Archer TK: Ubiquitin-dependent and ubiquitin-independent control of subunit stoichiometry in the SWI/SNF complex. J Biol Chem. 2010, 285: 35665-35674. 10.1074/jbc.M110.173997. Park Y, Yoon SK, Yoon JB: TRIP12 functions as an E3 ubiquitin ligase of APP-BP1. Biochem Biophys Res Commun. 2008, 374: 294-298. 10.1016/j.bbrc.2008.07.019. Kajiro M, Tsuchiya M, Kawabe Y, Furumai R, Iwasaki N, Hayashi Y, Katano M, Nakajima Y, Goto N, Watanabe T: The E3 ubiquitin ligase activity of Trip12 is essential for mouse embryogenesis. PLoS One. 2011, 6: e25871-10.1371/journal.pone.0025871. Hagiwara N, Klewer SE, Samson RA, Erickson DT, Lyon MF, Brilliant MH: Sox6 is a candidate gene for p100H myopathy, heart block, and sudden neonatal death. Proc Natl Acad Sci USA. 2000, 97: 4180-4185. 10.1073/pnas.97.8.4180. Hoppe T: Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem Sci. 2005, 30: 183-187. 10.1016/j.tibs.2005.02.004. Zhou P: Determining protein half-lives. Methods Mol Biol. 2004, 284: 67-77. Boisvert FM, Ahmad Y, Gierlinski M, Charriere F, Lamont D, Scott M, Barton G, Lamond AI: A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. 2012, 11: M111 011429- Kisselev AF, Goldberg AL: Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 2001, 8: 739-758. 10.1016/S1074-5521(01)00056-4. Vinals F, Ventura F: Myogenin protein stability is decreased by BMP-2 through a mechanism implicating Id1. J Biol Chem. 2004, 279: 45766-45772. 10.1074/jbc.M408059200. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR: Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet. 2005, 37: 1281-1288. Hughes SM, Chi MM, Lowry OH, Gundersen K: Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J Cell Biol. 1999, 145: 633-642. 10.1083/jcb.145.3.633. Brown DM, Parr T, Brameld JM: Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. J Muscle Res Cell Motil. 2012, 32: 383-390. 10.1007/s10974-011-9267-4. von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW: Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep. 2008, 9: 683-689. 10.1038/embor.2008.73. Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, Goumans MJ: MicroRNA-1 and −499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol. 2010, 30: 859-868. 10.1161/ATVBAHA.109.197434. Komander D, Rape M: The ubiquitin code. Annu Rev Biochem. 2012, 81: 203-229. 10.1146/annurev-biochem-060310-170328. Scheffner M, Staub O: HECT E3s and human disease. BMC Biochem. 2007, 1 (8 Suppl): S6- Gudjonsson T, Altmeyer M, Savic V, Toledo L, Dinant C, Grofte M, Bartkova J, Poulsen M, Oka Y, Bekker-Jensen S: TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell. 2012, 150: 697-709. 10.1016/j.cell.2012.06.039. Lindon C, Albagli O, Domeyne P, Montarras D, Pinset C: Constitutive instability of muscle regulatory factor Myf5 is distinct from its mitosis-specific disappearance, which requires a D-box-like motif overlapping the basic domain. Mol Cell Biol. 2000, 20: 8923-8932. 10.1128/MCB.20.23.8923-8932.2000. Sun L, Trausch-Azar JS, Muglia LJ, Schwartz AL: Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci USA. 2008, 105: 3339-3344. 10.1073/pnas.0800165105. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002. Bell ML, Buvoli M, Leinwand LA: Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol. 2010, 30: 1937-1945. 10.1128/MCB.01370-09. McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE: Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics. 2009, 39: 219-226. 10.1152/physiolgenomics.00042.2009. Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S: Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol. 2010, 588: 353-364. 10.1113/jphysiol.2009.181008. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN: A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009, 17: 662-673. 10.1016/j.devcel.2009.10.013. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA: Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron. 2010, 65: 597-611. 10.1016/j.neuron.2010.01.027. Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X, Mi QS, Xin M: MicroRNA-mediated control of oligodendrocyte differentiation. Neuron. 2010, 65: 612-626. 10.1016/j.neuron.2010.02.018. Fernandez-Lloris R, Osses N, Jaffray E, Shen LN, Vaughan OA, Girwood D, Bartrons R, Rosa JL, Hay RT, Ventura F: Repression of SOX6 transcriptional activity by SUMO modification. FEBS Lett. 2006, 580: 1215-1221. 10.1016/j.febslet.2006.01.031. Schiaffino S, Sandri M, Murgia M: Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda). 2007, 22: 269-278. 10.1152/physiol.00009.2007.