Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores

American Association for the Advancement of Science (AAAS) - Tập 279 Số 5350 - Trang 548-552 - 1998
Dongyuan Zhao1,2,3, Jianglin Feng2,3, Dan Shao2,3, Nicholas A. Melosh2,3, Glenn H. Fredrickson2,3, Bradley F. Chmelka2,3, Galen D. Stucky2,3
1D. Zhao, Q. Huo, G. D. Stucky, Department of Chemistry and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. J. Feng, Department of Chemistry and Center for Quantized Electronic Structures, University of.
2J. Feng, Department of Chemistry and Center for Quantized Electronic Structures, University of California, Santa Barbara, CA 93106, USA.
3N. Melosh, G. H. Fredrickson, B. F. Chmelka, Materials Research Laboratory and Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.

Tóm tắt

Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms. The SBA-15 materials are synthesized in acidic media to produce highly ordered, two-dimensional hexagonal (space group p 6 mm ) silica-block copolymer mesophases. Calcination at 500°C gives porous structures with unusually large interlattice d spacings of 74.5 to 320 angstroms between the (100) planes, pore sizes from 46 to 300 angstroms, pore volume fractions up to 0.85, and silica wall thicknesses of 31 to 64 angstroms. SBA-15 can be readily prepared over a wide range of uniform pore sizes and pore wall thicknesses at low temperature (35° to 80°C), using a variety of poly(alkylene oxide) triblock copolymers and by the addition of cosolvent organic molecules. The block copolymer species can be recovered for reuse by solvent extraction with ethanol or removed by heating at 140°C for 3 hours, in both cases, yielding a product that is thermally stable in boiling water.

Từ khóa


Tài liệu tham khảo

Davis M. E., Chem. Ind. 4, 137 (1992).

10.1038/352320a0

Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., ibid. 359, 710 (1992).

Beck J. S., et al., J. Am. Chem. Soc. 114, 10834 (1992).

Sayari A., Chem. Mater. 8, 1840 (1996).

Huo Q., et al., ibid. 6, 1176 (1994).

10.1126/science.268.5215.1324

Huo Q., et al., Nature 368, 317 (1994).

Huo Q., Margolese D. I., Stucky G. D., Chem. Mater. 8, 1147 (1996).

Antonelli D. M., Ying J. Y., Angew. Chem. Int. Ed. Engl. 35, 426 (1996);

; Curr. Opin. Colloid Interface Sci. 1 523 (1996);

Lim M. H., Blanford C. F., Stein A., J. Am. Chem. Soc. 119, 4090 (1997);

Tanev P. T., Pinnavaia T. J., Science 267, 865 (1995);

; ibid. 271 1267 (1996).

10.1126/science.269.5228.1242

Prouzet E., Pinnavaia T. J., Angew. Chem. Int. Ed. Engl. 36, 516 (1997).

C. Chen H. Li M. E. Davis Microporous Mater. 2 17 (1993).

D. Zhao et al. in preparation.

Attard G. S., Glyde J. C., Göltner C. G., Nature 378, 366 (1995).

Göltner C. G., Antonietti M., Adv. Mater. 9, 431 (1997);

Antonietti M., Göltner C., Angew. Chem. Int. Ed. Engl. 36, 910 (1997).

Firouzi A., Atef F., Oertli A. G., Stucky G. D., Chmelka B. F., J. Am. Chem. Soc. 119, 3596 (1997).

Khushalani D., Kuperman A., Ozin G. A., Adv. Mater. 7, 842 (1995).

10.1126/science.277.5325.552

Wanka G., Hoffmann H., Ulbricht W., Macromolecules 27, 4145 (1994);

; B. Chu and Z. Zhou in Nonionic Surfactants: Polyoxyalkylene Block Copolymers vol. 60 of Surfactant Science Series V M. Nace Ed. (Dekker New York 1996) p. 67.

Pluronic poly(alkylene oxide) triblock copolymers are a trademarked product of BASF Mt. Olive NJ.

The EO 106 PO 70 EO 106 triblock copolymer yields an Im3̅m cubic ( a 0 = 176 Å) silica mesostructure. The cubic phase assignments for silica-copolymer composites formed using EO 100 PO 39 EO 100 and EO 80 PO 30 EO 80 are based on 3D TEM studies. The space group is not yet assigned.

D. Zhao J. Feng B. F. Chmelka G. D. Stucky data not shown.

Schmidt R., Hansen E. W., Stöcker M., Akporiaye D., Ellestad O. H., J. Am Chem. Soc. 117, 4049 (1995).

Branton P. J., et al., J. Chem. Soc. Faraday Trans. 90, 2965 (1994).

The average pore sizes estimated from the TEM image contrasts in Figs. 4 A and B are slightly less than those determined from XRD and N 2 adsorption measurements.

R. Zana Colloids Surf. A Physicochem. Eng. Aspects 123 27 (1997).

R. Ryoo and S. Jun J. Phys. Chem. B 101 317 (1997)

R. Ryoo J. M. Kim C. H. Ko C. H. Shin ibid. 100 17718 (1996).

J. S. Beck C. T. Chu I. D. Johanson C. T. Kresge M. E. Leonowicz W. J. Roth J. C. Vartuli S. B. McCullen U.S. Patent 5 156 829 (1993).

For example for a calcined hexagonal SBA-15 sample with a pore size of 60 Å BET surface area of 780 m 2 /g and a pore volume of 0.80 cm 3 /g (Table 1) hydrothermal treatment in boiling water for 24 hours yields a material with an essentially identical XRD pattern a pore size of 64 Å BET surface area of 690 m 2 /g and a pore volume of 0.79 cm 3 /g.

D. Zhao N. Melosh B. F. Chmelka G. D. Stucky data not shown.

A Netzsch Thermoanalyzer STA 409 was used for thermal analysis of the solid products simultaneously performing TGA and DTA with heating rates of 5 K min –1 in air.

Hillmyer M., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., J. Am. Chem. Soc. 119, 2749 (1997).

Matsen M. W., Macromolecules 28, 5765 (1995);

; ___ and M. Schick Curr. Opin. Colloid Interface Sci. 1 329 (1996).

I. A. Aksay et al. Science 273 892 (1996);

Firouzi A., Schaefer D. J., Tolbert S. H., Stucky G. D., Chmelka B. F., J. Am. Chem. Soc. 119, 9466 (1997) ;

10.1126/science.278.5336.264

Supported by NSF under grants DMR-9520971 (G.D.S.) and DMR-9257064 (B.F.C.) the U.S. Army Research Office under grant DAAH04-96-1-0443 and the David and Lucille Packard Foundation (B.F.C.). We made use of UCSB Materials Research Laboratory Central Facilities supported by NSF under award DMR-9632716. B.F.C. is a Camille and Henry Dreyfus Teacher-Scholar and an Alfred P. Sloan Research Fellow. We thank BASF (Mt. Olive NJ) for providing block copolymer surfactants.