Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Trends in Smart Manufacturing: Role of Humans and Industrial Robots in Smart Factories
Tóm tắt
Bài báo này cung cấp tổng quan về vai trò của con người và robot trong các nhà máy thông minh, mối liên hệ của chúng với Cách mạng Công nghiệp 4.0, và những tiến bộ mà chúng đạt được liên quan đến các công nghệ liên quan. Nghiên cứu hiện tại cho thấy rằng một thập kỷ không đủ để cung cấp một ứng dụng hoặc triển khai tham chiếu cho Cách mạng Công nghiệp 4.0, chẳng hạn như các nhà máy thông minh. Vào năm 2011, Cách mạng Công nghiệp 4.0 lần đầu tiên được đề cập trong cộng đồng khoa học. Cách mạng Công nghiệp 4.0 đã ra đời với nhiều công nghệ hỗ trợ mới và các thuật ngữ nổi bật, chẳng hạn như Internet vạn vật (IoT), Hệ thống Vật lý mạng (CPS) và Kép số (DT). Bài báo này đầu tiên định nghĩa về các nhà máy thông minh và sản xuất thông minh liên quan đến vai trò của con người và robot. Tiếp theo là tổng quan về một số công nghệ được lựa chọn trong các nhà máy thông minh. Cuối cùng là triển vọng tương lai và mối liên hệ của nó với sản xuất thông minh.
Từ khóa
#Cách mạng Công nghiệp 4.0 #Nhà máy thông minh #Con người #Robot công nghiệp #Sản xuất thông minhTài liệu tham khảo
Hankel M, Rexroth B. Industrie 4.0: the reference architectural model industrie 4.0 (rami 4.0). Die Elektroindustrie: ZVEI; 2015.
Kuo CC, Shyu JZ, Ding K. Industrial revitalization via industry 4.0 – a comparative policy analysis among China, Germany and the USA. Global Transit. 2019;1:3–14. https://doi.org/10.1016/j.glt.2018.12.001.
Anderson, A.: Report to the President on Ensuring American Leadership in Advanced Manufacturing. Executive office of the President (2011) Accessed 2019-02-16.
Fukuyama, M.: Society 5.0: aiming for a new human-centered society. Japan Spotlight pp. 47–50 (2018).
Braganca S, Costa E, Castellucci I, Arezes PM. A brief overview of the use of collaborative robots in Industry 4.0: human role and safety. Basel: Springer International Publishing; 2019. p. 641–50.
Sziebig G. Survey and planning of high-payload human-robot collaboration: multi-modal communication based on sensor fusion. In: Wang Y, Martinsen K, Yu T, Wang K, editors. Advanced manufacturing and automation IX. Singapore: Springer Singapore; 2020. p. 545–51.
Zeid A, Sundaram S, Moghaddam M, Kamarthi S, Marion T. Interoperability in smart manufacturing: research challenges. Machines. 2019;7(2):21.
Stark R, Fresemann C, Lindow K. Development and operation of digital twins for technical systems and services. CIRP Ann. 2019;68(1):129–32. https://doi.org/10.1016/j.cirp.2019.04.024.
Fischer, K., Jensen, L.C., Kirstein, F., Stabinger, S., Erkent, O ., Shukla, D., Piater, J.: The effects of social gaze in human-robot collaborative assembly. In: A. Tapus, E. Andr’e, J.C. Martin, F. Ferland, M. Ammi (eds.) Social robotics, pp. 204–213. Springer International Publishing, Cham (2015).
Wan L. From intelligence science to intelligent manufacturing. Engineering. 2019;5(4):615–8. https://doi.org/10.1016/j.eng.2019.04.011.
Bunse, B., Kagermann, H., Wahlster, W.: Industrie 4.0-smart manufacturing for the future. GTIA-Germany Trade and Invest p. 40 (2013).
Liu C, Vengayil H, Lu Y, Xu X. A cyber-physical machine tools platform using OPC-UA and MTconnect. J Manuf Syst. 2019;51:61–74. https://doi.org/10.1016/j.jmsy.2019.04.006.
•• Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). Describes the importance of digital twins in relation to smart factories. Concludes with the lack of real implementation.
Avalle G, De Pace F, Fornaro C, Manuri F, Sanna A. An augmented reality system to support fault visualization in industrial robotic tasks. IEEE Access. 2019;7:132343–59. https://doi.org/10.1109/ACCESS.2019.2940887.
• Matheson E, Minto R, Zampieri EG, Faccio M, Rosati G. Human–robot collaboration in manufacturing applications: a review. Robotics. 2019;8(4):100 Highlights the major trends in application of robots in manufacturing. Assumes the spread of cobots will decline.
Oyekan JO, Hutabarat W, Tiwari A, Grech R, Aung MH, Mariani MP, et al. The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robot Comput Integr Manuf. 2019;55:41–54. https://doi.org/10.1016/j.rcim.2018.07.006.
Robla-Gomez S, Becerra VM, Llata JR, Gonzalez-Sarabia E, Torre-Ferrero C, Perez-Oria J. Working together: a review on safe human-robot collaboration in industrial environments. IEEE Access. 2017;5:26754–73. https://doi.org/10.1109/ACCESS.2017.2773127.
Shu, B., Sziebig, G., Pieska, S.: Human-robot collaboration: task sharing through virtual reality. In: IECON 2018 - 44th Annual Conference of the IEEE Indus- trial Electronics Society, pp. 6040–6044 (2018). DOI https://doi.org/10.1109/IECON.2018.8591102
Petruck H, Nelles J, Faber M, Giese H, Geibel M, Mostert S, et al. Human- robot cooperation in manual assembly – interaction concepts for the future workplace. In: Chen J, editor. Advances in human factors in robots and unmanned systems. Cham: Springer International Publishing; 2020. p. 60–71.
Linnerud, A.S., Sandøy, R., Wetterwald, L.E.: Cad-based system for programming of robotic assembly processes with human-in-the-loop. In: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 2303–2308 (2019). DOI https://doi.org/10.1109/ISIE.2019.8781385
Arbo, M.H., Pane, Y., Aertbelien, E., Decre, W.: A system architecture for constraint-based robotic assembly with cad information. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pp. 690–696 (2018).
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 763–768 (2009). DOI https://doi.org/10.1109/ROBOT.2009.5152385
Luo Y, Duan Y, Li W, Pace P, Fortino G. Work-shop networks integration using mobile intelligence in smart factories. IEEE Commun Mag. 2018;56(2):68–75.
Mehami J, Nawi M, Zhong RY. Smart automated guided vehicles for manufacturing in the context of Industry 4.0. Procedia Manuf. 2018;26:1077–86.
Vogel, C., Poggendorf, M., Walter, C., Elkmann, N.: Towards safe physical human-robot collaboration: a projection-based safety system. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3355–3360 (2011). DOI https://doi.org/10.1109/IROS.2011.6094550
Bdiwi M, Pfeifer M, Sterzing A. A new strategy for ensuring human safety during various levels of interaction with industrial robots. CIRP Ann. 2017;66(1):453–6.
Pires, J.N., Azar, A.S.: Advances in robotics for additive/hybrid manufacturing: robot control, speech inter-face and path planning. Industrial Robot: An International Journal (2018).
Gibson, I., Rosen, D.W., Stucker, B.: Additive manufacturing technologies. Springer, Berlin (2010). DOI https://doi.org/10.1007/978-1-4419-1120-9.
Ribeiro, F.M., Pires, J.N., Azar, A.S.: Implementation of a robot control architecture for additive manufacturing applications. Industrial Robot: the international journal of robotics research and application (2019).
mx3d.com/“MX3D Bridge”: Mx3d bridge (2015–2019). URL https://mx3d.com/projects/mx3d-bridge/. Accessed 2019-02-04.
Lathabai S.: Additive manufacturing of aluminium-based alloys and composites, Fundamentals of Aluminium Metallurgy, Woodhead Publishing, pp. 47–92 (2018) DOI https://doi.org/10.1016/B978-0-08-102063-0.00002-3
waam3d.com/“WAAM3D Limited” (2018–2020). URL https://waam3d.com/. Accessed 2020-03-03.
Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P. Wire+ arc additive manufacturing. Mater Sci Technol. 2016;32(7):641–7.
Martina F, Mehnen J, Williams SW, Colegrove P, Wang F. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol. 2012;212(6):1377–86.
Evjemo, L.D., Langelandsvik, G., Gravdahl, J.T.: Wire arc additive manufacturing by robot manipulator: towards creating complex geometries. In: 5th IFAC ICONS, Belfast, pp. 103–109. Elsevier (2019).
Moe S, Gravdahl JT, Pettersen KY. Set-based control for autonomous spray painting. IEEE Trans Autom Sci Eng. 2018;15(4):1785–96. https://doi.org/10.1109/TASE.2018.2801382.
Evjemo, L.D., Moe, S., Gravdahl, J.T.: Robotised wire arc additive manufacturing using set-based control: experimental results. In: Proceedings of the 21st IFAC world congress (2020).
Rodrigues T. A., Duarte V., Miranda R. M., Santos T. G. and Oliveira J. P.: Current status and perspectives on wire and arc additive manufacturing (WAAM), materials 2019, 12(7), 1121, (2019) DOI https://doi.org/10.3390/ma12071121.
Brückner F., Riede M., Müller M. M., Marquardt F., Willner R., Seidel A., Lopez E., Leyens C. and Beyer E.: Enhanced manufacturing possibilities using multi-materials in laser metal deposition, In: 36th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2017), paper 1301 (2017).
Wang J, Feng JC, Wang YX. Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding, Materials Science and Technology. Mater Sci Technol. 2008;24(7):827–31. https://doi.org/10.1179/174328408X278411.
Yang S, Zhang J, Lian J, Lei Y. Welding of aluminum alloy to zinc coated steel by cold metal transfer. Mater Des. 2013;49(2013):602–12. https://doi.org/10.1016/j.matdes.2013.01.04.