Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Điều trị bằng thuốc ức chế DNA methyltransferase làm nữ hóa cá ngựa vằn và gây ra những thay đổi dài hạn trong biểu hiện của các tuyến sinh dục
Tóm tắt
Vai trò của các sửa đổi sinh epigenetic như methyl hóa DNA trong quá trình phát triển giới tính của động vật có xương sống còn chưa rõ ràng. Sử dụng mô hình cá ngựa vằn, chúng tôi đã thử nghiệm tác động của một trong những chất ức chế DNA methyltransferase phổ biến nhất, 5-aza-2′-deoxycytidine (5-aza-dC), được phê duyệt để điều trị bệnh bạch cầu tủy cấp tính và đang được nghiên cứu tích cực cho việc điều trị các khối u rắn. Nhiều thí nghiệm phản ứng liều đã được thực hiện trong hai giai đoạn, không chỉ trong những ngày đầu phát triển (0–6 ngày sau thụ tinh, dpf), như đã thực hiện trong các nghiên cứu trước, mà còn, như một điều mới mẻ, trong giai đoạn phát triển tuyến sinh dục (10–30 dpf). Việc điều trị sớm bằng 5-aza-dC đã làm thay đổi sự phát triển phôi, làm chậm quá trình nở và tăng tỷ lệ biến dạng và tỷ lệ tử vong, như mong đợi. Tuy nhiên, kết quả nổi bật nhất là sự gia tăng số lượng cá cái, cho thấy rằng những thay đổi do điều trị 5-aza-dC có thể ảnh hưởng đến sự phát triển giới tính. Kết quả đã được xác nhận khi việc điều trị trùng với giai đoạn phát triển tuyến sinh dục. Bên cạnh đó, chúng tôi cũng phát hiện rằng hệ gen biểu hiện ở tuyến sinh dục trưởng thành của cá cái tiếp xúc với 5-aza-dC đã có những thay đổi đáng kể trong biểu hiện của các gene liên quan đến sinh sản chính (ví dụ: cyp11a1, esr2b và figla), và rằng một số con đường liên quan đến nữ giới như bệnh Fanconi hoặc con đường tín hiệu Wnt đã bị giảm điều hòa. Hơn nữa, một sự ức chế toàn diện đối với các gene liên quan đến các cơ chế điều chỉnh epigenetic (ví dụ: dnmt1, dicer, cbx4) cũng đã được quan sát thấy. Tất cả các kết quả của chúng tôi chỉ ra rằng việc điều trị bằng một chất ức chế methyl hóa DNA cũng có thể làm thay đổi sự phát triển giới tính ở cá ngựa vằn, với những thay đổi vĩnh viễn trong hệ gen biểu hiện của tuyến sinh dục trưởng thành, ít nhất ở các cá cái. Kết quả của chúng tôi cho thấy tầm quan trọng của methyl hóa DNA đối với việc kiểm soát chính xác sự phát triển giới tính, mở ra những hướng đi mới cho việc kiểm soát tỷ lệ giới tính ở cá (nuôi trồng thủy sản, kiểm soát quần thể) và kêu gọi sự chú ý đến những tác động lâu dài có thể âm thầm của liệu pháp dnmt khi được sử dụng, ví dụ, trong điều trị trẻ em trước dậy thì bị ảnh hưởng bởi một số loại ung thư.
Từ khóa
#DNA methylation #zebrafish #sexual development #epigenetic modifications #5-aza-2′-deoxycytidine #reproductive genes #gonadal transcriptome #female feminizationTài liệu tham khảo
Gardiner-Garden M, Frommer M. CpG Islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.
Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.
Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, et al. The DNA sequence of the human X chromosome. Nature. 2005;434:325–37.
Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.
Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.
Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10:631–47.
Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002–10.
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.
Razin A, Riggs AD. DNA methylation and gene-function. Science. 1980;210:604–10.
Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2’-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000;60:6039–44.
Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.
Yan PS, Chen CM, Shi HD, Rahmatpanah F, Wei SH, Caldwell CW, Huang THM. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 2001;61:8375–80.
Egger G, Liang GN, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.
Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97:1498–506.
Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst. 2003;95:399–409.
Jones PA, Taylor SM. Cellular-differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93.
Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2′-deoxycytidine to mammalian-cells is mediated primarily by covalent trapping of dna methyltransferase rather than DNA demethylation. PNAS. 1994;91:11797–801.
Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13.
Saleh MH, Wang L, Goldberg MS. Improving cancer immunotherapy with DNA methyltransferase inhibitors. Cancer Immunol Immun. 2016;65:787–96.
White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13:624–36.
Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish. Epigenetics Chromatin. 2017;10:11.
Jiang L, Zhang J, Wang J-J, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, et al. Sperm, but not oocyte, dna methylome is inherited by zebrafish early embryos. Cell. 2013;153:773–84.
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153:759–72.
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153:759–72.
Mhanni AA, McGowan RA. Global changes in genomic methylation levels during early development of the zebrafish embryo. Dev Genes Evol. 2004;214:412–7.
Wu SF, Zhang H, Hammoud SS, Potok M, Nix DA, Jones DA, Cairns BR. DNA methylation profiling in zebrafish. Methods Cell Biol. 2011;104:327–39.
Martin CC, Laforest L, Akimenko MA, Ekker M. A role for DNA methylation in gastrulation and somite patterning. Dev Biol. 1999;206:189–205.
Dasmahapatra AK, Khan IA. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine. Comput Biochem Physiol C: Toxicol Pharmacol. 2015;176–177:1–9.
Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT, Davidson NE. Role of estrogen receptor gene demethylation and DNA methyltransferase DNA adduct formation in 5-aza-2’-deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem. 1997;272:32260–6.
Bouwmeester MC, Ruiter S, Lommelaars T, Sippel J, Hodemaekers HM, van den Brandhof EJ, Pennings JLA, Kamstra JH, Jelinek J, Issa JPJ, et al. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure. Toxicol Appl Pharmacol. 2016;291:84–96.
Aniagu SO, Williams TD, Allen Y, Katsiadaki I, Chipman JK. Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus aculeatus) after exposure to hexabromocyclododecane and 17-beta oestradiol. Environ Int. 2008;34:310–7.
Olsvik PA, Williams TD, Tung HS, Mirbahai L, Sanden M, Skjaerven KH, Ellingsen S. Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comp Biochem Physiol Toxicol Pharmacol: CBP. 2014;165:17–27.
Kamstra JH, Sales LB, Alestrom P, Legler J. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish. Epigenetics Chromatin. 2017;10:20.
Labbé C, Robles V, Herraez MP. Epigenetics in fish gametes and early embryo. Aquaculture. 2017;472:93–106.
Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242:360–70.
Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011;7:1002447.
Si Y, Ding YX, He F, Wen HS, Li JF, Zhao JL, Huang ZJ. DNA methylation level of cyp19a1a and foxl2 gene related to their expression patterns and reproduction traits during ovary development stages of Japanese flounder (Paralichthys olivaceus). Gene. 2016;575:321–30.
Bai J, Gong W, Wang C, Gao Y, Hong W, Chen SX. Dynamic methylation pattern of cyp19a1a core promoter during zebrafish ovarian folliculogenesis. Fish Physiol Biochem. 2016;42:947–54.
Sun LX, Wang YY, Zhao Y, Wang H, Li N, Ji XS. Global DNA methylation changes in Nile tilapia gonads during high temperature-induced masculinization. PLoS One. 2016;11:e0158483.
Shao CW, Li QY, Chen SL, Zhang P, Lian JM, Hu QM, Sun B, Jin LJ, Liu SS, Wang ZJ, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24:604–15.
Ribas L, Piferrer F. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev Aquac. 2014;6:209–40.
Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L. Polygenic sex determination system in zebrafish. PLoS One. 2012;7:e34397.
Ribas L, Liew WC, Díaz N, Sreenivasan R, Orbán L, Piferrer F. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes. PNAS. 2017;114:E941–50.
Wilson CA, High SK, McCluskey BM, Amores A, Yan YL, Titus TA, Anderson JL, Batzel P, Carvan MJ III, Schartl M, Postlethwait JH. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics. 2014;198:1291–308.
Rodriguez-Mari A, Canestro C, BreMiller RA, Catchen JM, Yan YL, Postlethwait JH. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One. 2013;8:e73951.
Liew WC, Orban L. Zebrafish sex: a complicated affair. Brief Funct Genom. 2014;13:172–87.
Ribas L, Robledo D, Gómez-Tato A, Viñas A, Martínez P, Piferrer F. Comprehensive transcriptomic analysis of the process of gonadal sex differentiation in the turbot (Scophthalmus maximus). Mol Cell Endocrinol. 2016;422:132–49.
Vizziano D, Randuineau G, Baron D, Cauty C, Guiguen Y. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev Dyn. 2007;236:2198–206.
Andersson S, Geissler WM, Wu L, Davis DL, Grumbach MM, New MJ, Schwarz HP, Blethen SL, Mendonca BB, Bloise W, et al. Molecular genetics and pathophysiology of 17 beta-hydroxysteroid dehydrogenase 3 deficiency. J Clin Endocrinol Metab. 1996;81:130–6.
Pennimpede T, Cameron DA, MacLean GA, Li H, Abu-Abed S, Petkovich M. The role of cyp26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth Defects Res Part a-Clin Mol Teratol. 2010;88:883–94.
Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11 beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–66.
Diaz N, Piferrer F. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genom. 2015;16:679.
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.
Iida A, Shimada A, Shima A, Takamatsu N, Hori H, Takeuchi K, Koga A. Targeted reduction of the DNA methylation level with 5-azacytidine promotes excision of the medaka fish Tol2 transposable element. Genet Res. 2006;87:187–93.
Zhang X, Li H, Qiu Q, Qi Y, Huang D, Zhang Y. 2,4-Dichlorophenol induces global DNA hypermethylation through the increase of S-adenosylmethionine and the upregulation of dnmts mRNA in the liver of goldfish Carassius auratus. Comp Biochem Physiol C: Toxicol Pharmacol. 2014;160:54–9.
Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans. 2004;32:910–2.
Andersen IS, Lindeman LC, Reiner AH, Ostrup O, Aanes H, Alestrom P, Collas P. Epigenetic marking of the zebrafish developmental program. Curr Top Dev Biol. 2013;104:85–112.
Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W. Epigenetic modifications during sex change repress gonadotropin stimulation of cyp19a1a in a teleost ricefield eel (Monopterus albus). Endocrinology. 2013;154:2881–90.
Rivard GE, Momparler RL, Demers J, Benoit P, Raymond R, Lin KT, Momparler LF. Phase-I study on 5-aza-2′-deoxycytidine in children with acute-leukemia. Leuk Res. 1981;5:453–62.
Blasco M, Fernandino JI, Guilgur LG, Strussmann CA, Somoza GM, Vizziano-Cantonnet D. Molecular characterization of cyp11a1 and cyp11b1 and their gene expression profile in pejerrey (Odontesthes bonariensis) during early gonadal development. Comp Biochem Physiol A: Mol Integr Physiol. 2010;156:110–8.
Hogg K, Robinson WP, Beristain AG. Activation of endocrine-related gene expression in placental choriocarcinoma cell lines following DNA methylation knock-down. Mol Hum Reprod. 2014;20:677–89.
Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, et al. Retinoid signaling determines germ cell fate in mice. Science. 2006;312:596–600.
Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. PNAS. 2006;103:2474–9.
Park JH, Lee J, Kim CH, Lee S. The polymorphism (−600 C > A) of CpG methylation site at the promoter region of CYP17A1 and its association of male infertility and testosterone levels. Gene. 2014;534:107–12.
Bovenzi V, Momparler RL. Antineoplastic action of 5-aza-2 ‘-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol. 2001;48:71–6.
Prowse AH, Vanderveer L, Milling SWF, Pan ZZ, Dunbrack RL, Xu XX, Godwin AK. OVCA2 is downregulated and degraded during retinoid-induced apoptosis. Int J Cancer. 2002;99:185–92.
Orban L, Sreenivasan R, Olsson PE. Long and winding roads: testis differentiation in zebrafish. Mol Cell Endocrinol. 2009;312:35–41.
Kantarjian H, Issa JPJ, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F, et al. Decitabine improves patient outcomes in myelodysplastic syndromes—results of a Phase III randomized study. Cancer. 2006;106:1794–803.
Derissen EJB, Beijnen JH, Schellens JHM. Concise drug review: azacitidine and decitabine. Oncologist. 2013;18:619–24.
Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL, Larson RA. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol. 2006;24:3895–903.
Ramos MP, Wijetunga NA, McLellan AS, Suzuki M, Greally JM. DNA demethylation by 5-aza-2′-deoxycytidine is imprinted, targeted to euchromatin, and has limited transcriptional consequences. Epigenetics Chromatin. 2015;8:11.
Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang YM, Chuikov S, Valenzuela P, Tempst P, Steward R, et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell. 2002;9:1201–13.
Chen W, Cao M, Yang Y, Nagahama Y, Zhao H. Expression pattern of prmt5 in adult fish and embryos of medaka, Oryzias latipes. Fish Physiol Biochem. 2009;35:325–32.
Tse AC-K, Li J-W, Wang SY, Chan T-F, Lai KP, Wu RS-S. Hypoxia alters testicular functions of marine medaka through microRNAs regulation. Aquat Toxicol. 2016;180:266–73.
Wang SY, Lau K, Lai K-P, Zhang J-W, Tse AC-K, Li J-W, Tong Y, Chan T-F, Wong CK-C, Chiu JM-Y, et al. Hypoxia causes transgenerational impairments in reproduction of fish. Nature Communications. 2016;7:12114.
Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther. 2005;4:1515–20.
Ghoshal K, Datta J, Majumder S, Bai SM, Kutay H, Motiwala T, Jacob ST. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005;25:4727–41.
Firmino J, Carballo C, Armesto P, Campinho MA, Power DM, Manchado M. Phylogeny, expression patterns and regulation of DNA Methyltransferases in early development of the flatfish, Solea senegalensis. BMC Dev Biol. 2017;17:11.
Liu K, Wang YF, Cantemir C, Muller MT. Endogenous assays of dna methyltransferases: evidence for differential activities of dnmt1, dnmt2, and dnmt3 in mammalian cells in vivo. Mol Cell Biol. 2003;23:2709–19.
Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.
Zhang XY, Lu K, Zhou Q. Dicer1 is crucial for the oocyte maturation of telotrophic ovary in Nilaparvata lugens (stal) (Hemiptera: geometroidea). Arch Insect Biochem Physiol. 2013;84:194–208.
Tanaka ED, Piulachs MD. Dicer-1 is a key enzyme in the regulation of oogenesis in panoistic ovaries. Biol Cell. 2012;104:452–61.
Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.
Wienholds E, Koudijs MJ, van Eeden FJM, Cuppen E, Plasterk RHA. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet. 2003;35:217–8.
Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T. Male-to-female sex reversal in M33 mutant mice. Nature. 1998;393:688–92.
Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, Kidokoro T, Kanai Y, Schedl A, Wilhelm D, et al. Cbx2, a polycomb group gene, is required for sry gene expression in mice. Endocrinology. 2012;153:913–24.
Liu XY, Zhang XB, Li MH, Zheng SQ, Liu ZL, Cheng YY, Wang DS. Genome-wide identification, evolution of chromobox family genes and their expression in Nile tilapia. Comp Biochem Physiol B: Biochem Mol Biol. 2016;203:25–34.
OECD. Test No. 234: Fish sexual development test OECD Publishing, Paris; 2011.
Ribas L, Valdivieso A, Diaz N, Piferrer F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J Exp Biol. 2017;220:1056–64.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res. 2002;30:207–10.
Fowler J, Cohen L, Jarvis P. Practical statistics for field biology. Chichester: Wiley; 2008.