Treatment of soy bean process water using hybrid processes

Central European Journal of Chemistry - Tập 11 - Trang 46-56 - 2012
Viktor Pauer1, Edit Csefalvay1, Peter Mizsey1,2
1Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest, Hungary
2Research Institute of Chemical and Process Engineering, University of Pannonia, Veszprem, Hungary

Tóm tắt

The soy bean process water that is a by-product of soy processing technology can be utilized with a hybrid separation system recommended and investigated in this work. The aims of the soy bean water processing are to i.) concentrate the valuable components of the soy process water and ii.) reuse its water content. Two hybrid separation systems are considered and investigated: ultrafiltration followed by nanofiltration and centrifugal separation followed by nanofiltration. These hybrid separation systems are new in the area of their current application. Experiments verify that centrifugal separation is a more appropriate pre-treatment method for the removal of suspended solids and for the preservation of the sucrose content of the soy bean process water than ultrafiltration. Total sucrose can be rejected by nanofiltration membrane forming a sugar-rich retentate that contains other valuable components, too. Both tested hybrid processes result in clear and reusable permeates with low chemical oxygen demand that can be recycled to the production process reducing its water consumption and improving its sustainability. The recommended new hybrid separation system, centrifugal separation followed by nanofiltration, proves to be successful in this area of the biochemical industry.

Tài liệu tham khảo

L. Xu, K. Lamb, L. Layton, A. Kumar, Food. Res. Int. 37, 867 (2004) T.B. Osborne, L.B. Mendel, E.L. Ferry, A.J. Wakeman, J. Biol. Chem. (1917) A. Jednákovits, A. Salgó, J. Szilbereky, G. Barla Szabó, Patent P0800665 HU 11/11/2008, A23L 1/20 ed. (Hungarian Intellectual Property Office, Hungary, 2008) M. Messina, S. Barnes, J. Natl. Cancer I. 83, 541 (1991) G. Daufin, J.P. Escudier, H. Carrère, S. Bérot, L. Fillaudeau, M. Decloux, Food Bioprod. Process. 79, 89 (2001) D. Hervé, Industries Alimentaires et Agricoles 111(7/8), 429 (1994) (In French) H. Carrère, F. René, J. Membrane Sci. 110, 191 (1996) C. Blöcher, M. Noronha, L. Fünfrocken, J. Dorda, V. Mavrov, H.D. Janke, H. Chmiel, Desalination 144, 143 (2002) M. Noronha, T. Britz, V. Mavrov, H.D. Janke, H. Chmiel, Desalination 143, 183 (2002) V. Mavrov, E. Bélières, Desalination 131, 75 (2000) A. Fähnrich, V. Mavrov, H. Chmiel, Desalination 119, 213 (1998) A.S. Cassini, I.C. Tessaro, L.D.F. Marczak, C. Pertile, J. Clean. Prod. 18, 260 (2010) Z. Alibhai, M. Mondor, C. Moresoli, D. Ippersiel, F. Lamarche, Desalination 191, 351 (2006) M. Mondor, D. Ippersiel, F. Lamarche, J.I. Boye, J. Membrane Sci. 231, 169 (2004) M. Li, Y. Zhao, S. Zhou, W. Xing, F.S. Wong, J. Membrane Sci. 299, 122 (2007) T. Furukawa, K. Kokubo, K.. Nakamura, K. Matsumoto, J. Membrane Sci. 322, 491 (2008) J. Luo, L. Ding, X. Chen, Y. Wan, Sep. Purif. Technol. 66, 429 (2009) S.K. Sayed Razavi, J.L. Harris, F. Sherkat, J. Membrane Sci. 114, 93 (1996) S.K. Sayed Razavi, J.L. Harris, J. Membrane Sci. 118, 279 (1996) N.S. Krishna Kumar, M.K. Yea, M. Cheryan, J. Membrane Sci. 244, 235 (2004) R.K. Sinnott, Chemical Engineering Design; 4th edition (Elsevier Butterworth-Heinemann: Oxford, MA, USA, 2005) Vol. 6 C. Zhanfeng, China Particuology 3, 343 (2005) A.S. Jönsson, G. Trägårdh, Desalination 77, 135 (1990)