Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tập thể dục trên máy chạy bộ giảm thiểu tình trạng rối loạn sắt trong não, làm trầm trọng thêm việc sản xuất amyloid-β ở tế bào thần kinh, cái chết tế bào thần kinh và rối loạn nhận thức trong mô hình chuột chuyển gen của bệnh Alzheimer
Tóm tắt
Sắt trong não tăng theo độ tuổi và sự chuyển hóa sắt não bất thường đang ngày càng có khả năng liên quan đến bệnh lý của bệnh Alzheimer (AD). Ảnh hưởng điều chỉnh sắt của furin, một loại proconvertase được biểu hiện phổ biến, có thể đóng một vai trò quan trọng trong AD. Do đó, cần thiết phải nghiên cứu ảnh hưởng của furin đến việc điều chỉnh sắt trong AD. Mục tiêu của chúng tôi là xác định vai trò của vận động thể chất trong AD liên quan đến tình trạng rối loạn sắt trong não. Tập thể dục trên máy chạy bộ làm giảm tình trạng điều chỉnh sắt bất thường liên quan đến AD do furin trong cơ thể sống, như được chứng minh qua các thí nghiệm trên chuột APP-C105 già. Tiếp theo, chúng tôi đã kiểm tra xem liệu việc tập thể dục trên máy chạy bộ có làm giảm lượng sắt dư thừa, trực tiếp ảnh hưởng đến việc sản xuất amyloid-β (Aβ) thông qua việc điều chỉnh quá trình xử lý α-secretase phụ thuộc vào precursor protein amyloid (APP), liên quan đến sự điều chỉnh hoạt động của furin hay không. Chúng tôi đã quan sát thấy rằng sự suy giảm nhận thức và cái chết tế bào thần kinh do Aβ được gây ra bởi sự phá hủy quá trình xử lý APP thông qua sự gián đoạn hoạt động của furin do sắt dư thừa trên chuột APP-C105 già. Sự suy giảm nhận thức và cái chết tế bào này đã được giảm thiểu nhờ việc tập thể dục trên máy chạy bộ. Kết quả này gợi ý rằng việc tập thể dục trên máy chạy bộ đã giảm thiểu sự suy giảm nhận thức và cái chết tế bào thần kinh do Aβ thông qua việc thúc đẩy quá trình xử lý APP phụ thuộc vào α-secretase nhờ sự tăng cường hoạt động của furin do sắt thấp gây ra. Điều này đi đôi với việc giảm mức độ sản phẩm oxi hóa lipid và nâng cao khả năng enzyme bảo vệ chống oxy hóa. Do đó, các chiến lược điều trị nhắm vào sắt liên quan đến việc tập thể dục trên máy chạy bộ có thể hữu ích cho bệnh nhân mắc AD.
Từ khóa
#Bệnh Alzheimer #sắt não #furin #vận động thể chất #amyloid-β #điều chỉnh sắtTài liệu tham khảo
Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430(7000):631–639. https://doi.org/10.1038/nature02621
Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741
Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142
Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14(5):469–486. https://doi.org/10.1038/mp.2008.96
Bertram L, Tanzi RE (2008) Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778. https://doi.org/10.1038/nrn2494
Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, White LR, Lydersen S et al (2008) APOE epsilon 4 lowers age at onset and is a high risk factor for Alzheimer's disease; a case control study from central Norway. BMC Neurol 8:9. https://doi.org/10.1186/1471-2377-8-9
Lott IT, Head E (2005) Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol Aging 26(3):383–389. https://doi.org/10.1016/j.neurobiolaging.2004.08.005
Gao Y, Tan L, Yu JT, Tan L (2018) Tau in Alzheimer's disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 15(3):283–300. https://doi.org/10.2174/1567205014666170417111859
Cross CE, van der Vliet A, Louie S, Thiele JJ, Halliwell B (1998) Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces. Environ Health Perspect 106 Suppl 5(Suppl 5):1241–1251. https://doi.org/10.1289/ehp.98106s51241
Ang ET, Tai YK, Lo SQ, Seet R, Soong TW (2010) Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Front Aging Neurosci 2. https://doi.org/10.3389/fnagi.2010.00025
Gallagher JJ, Finnegan ME, Grehan B, Dobson J, Collingwood JF, Lynch MA (2012) Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis 28(1):147–161. https://doi.org/10.3233/jad-2011-110614
van Rooden S, Doan NT, Versluis MJ, Goos JD, Webb AG, Oleksik AM, van der Flier WM, Scheltens P et al (2015) 7TT2*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease. Neurobiol Aging 36(1):20–26. https://doi.org/10.1016/j.neurobiolaging.2014.07.006
Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, Lewis H, Rosahl T et al (2009) Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer's disease. Eur J Neurosci 29(7):1335–1347. https://doi.org/10.1111/j.1460-9568.2009.06701.x
Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873. https://doi.org/10.1038/nrn1537
Kim AC, Lim S, Kim YK (2018) Metal ion effects on Aβ and Tau aggregation. Int J Mol Sci 19(1). https://doi.org/10.3390/ijms19010128
Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ et al (2011) Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 286(6):4248–4256. https://doi.org/10.1074/jbc.M110.158980
Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G et al (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 30(4):447–450. https://doi.org/10.1016/s0891-5849(00)00494-9
Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PL, Siedlak SL, Cash AD, Liu Q et al (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16(1):77–81. https://doi.org/10.1023/a:1020731021276
Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T (2013) Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. Oxidative Med Cell Longev 2013:726954–726919. https://doi.org/10.1155/2013/726954
Bush AI (2013) The metal theory of Alzheimer's disease. J Alzheimers Dis 33(Suppl 1):S277–S281. https://doi.org/10.3233/jad-2012-129011
Silvestri L, Camaschella C (2008) A potential pathogenetic role of iron in Alzheimer's disease. J Cell Mol Med 12(5a):1548–1550. https://doi.org/10.1111/j.1582-4934.2008.00356.x
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. https://doi.org/10.1016/s1474-4422(14)70117-6
Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J Alzheimers Dis 16(4):879–895. https://doi.org/10.3233/jad-2009-1010
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C (2018) Iron and Alzheimer's disease: from pathogenesis to therapeutic implications. Front Neurosci 12:632. https://doi.org/10.3389/fnins.2018.00632
Choi DH, Kwon IS, Koo JH, Jang YC, Kang EB, Byun JE, Um HS, Park HS et al (2014) The effect of treadmill exercise on inflammatory responses in rat model of streptozotocin-induced experimental dementia of Alzheimer's type. J Exerc Nutr Biochem 18(2):225–233. https://doi.org/10.5717/jenb.2014.18.2.225
Kang EB, Kwon IS, Koo JH, Kim EJ, Kim CH, Lee J, Yang CH, Lee YI et al (2013) Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis 18(11):1332–1347. https://doi.org/10.1007/s10495-013-0884-9
Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017) Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease. Exp Neurol 288:142–152. https://doi.org/10.1016/j.expneurol.2016.11.014
Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med 22(4):529–539
Cho JY, Hwang DY, Kang TS, Shin DH, Hwang JH, Lim CH, Lee SH, Lim HJ et al (2003) Use of NSE/PS2m-transgenic mice in the study of the protective effect of exercise on Alzheimer's disease. J Sports Sci 21(11):943–951. https://doi.org/10.1080/0264041031000140365
Schefer V, Talan MI (1996) Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol 31(3):387–392. https://doi.org/10.1016/0531-5565(95)02032-2
Becerril-Ortega J, Bordji K, Fréret T, Rush T, Buisson A (2014) Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease. Neurobiol Aging 35(10):2288–2301. https://doi.org/10.1016/j.neurobiolaging.2014.04.019
Yu R, Topiwala A, Jacoby R, Fazel S (2019) Aggressive behaviors in Alzheimer disease and mild cognitive impairment: systematic review and meta-analysis. Am J Geriatr Psychiatry 27(3):290–300. https://doi.org/10.1016/j.jagp.2018.10.008
Hardy PA, Gash D, Yokel R, Andersen A, Ai Y, Zhang Z (2005) Correlation of R2 with total iron concentration in the brains of rhesus monkeys. J Magn Reson Imaging 21(2):118–127. https://doi.org/10.1002/jmri.20244
Xian-hui D, Wei-juan G, Tie-mei S, Hong-lin X, Jiang-tao B, Jing-yi Z, Xi-qing C (2015) Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. J Trace Elem Med Biol 30:118–123. https://doi.org/10.1016/j.jtemb.2014.11.009
Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 139 Suppl 1:179–197. https://doi.org/10.1111/jnc.13425
Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740. https://doi.org/10.1111/j.1471-4159.2007.04976.x
Ashraf A, Clark M, So PW (2018) The Aging of Iron Man. Front Aging Neurosci 10:65. https://doi.org/10.3389/fnagi.2018.00065
Smith MA, Wehr K, Harris PL, Siedlak SL, Connor JR, Perry G (1998) Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Res 788(1-2):232–236. https://doi.org/10.1016/s0006-8993(98)00002-x
Crielaard BJ, Lammers T, Rivella S (2017) Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 16(6):400–423. https://doi.org/10.1038/nrd.2016.248
Lu LN, Qian ZM, Wu KC, Yung WH, Ke Y (2017) Expression of Iron transporters and pathological hallmarks of Parkinson's and Alzheimer's Diseases in the brain of young, adult, and aged rats. Mol Neurobiol 54(7):5213–5224. https://doi.org/10.1007/s12035-016-0067-0
Yang H, Yang M, Guan H, Liu Z, Zhao S, Takeuchi S, Yanagisawa D, Tooyama I (2013) Mitochondrial ferritin in neurodegenerative diseases. Neurosci Res 77(1-2):1–7. https://doi.org/10.1016/j.neures.2013.07.005
Wang L, Yang H, Zhao S, Sato H, Konishi Y, Beach TG, Abdelalim EM, Bisem NJ et al (2011) Expression and localization of mitochondrial ferritin mRNA in Alzheimer's disease cerebral cortex. PLoS One 6(7):e22325. https://doi.org/10.1371/journal.pone.0022325
Wu WS, Zhao YS, Shi ZH, Chang SY, Nie GJ, Duan XL, Zhao SM, Wu Q et al (2013) Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid Redox Signal 18(2):158–169. https://doi.org/10.1089/ars.2011.4285
Gao G, Chang YZ (2014) Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 5:19. https://doi.org/10.3389/fphar.2014.00019
Wang D, Zhang Q, Hu X, Wang W, Zhu X, Yuan Z (2018) Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater 65:327–338. https://doi.org/10.1016/j.actbio.2017.10.039
Hwang EM, Kim SK, Sohn JH, Lee JY, Kim Y, Kim YS, Mook-Jung I (2006) Furin is an endogenous regulator of alpha-secretase associated APP processing. Biochem Biophys Res Commun 349(2):654–659. https://doi.org/10.1016/j.bbrc.2006.08.077
Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24(2-3):184–187. https://doi.org/10.1159/000065696
Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T et al (2008) Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 104(5):1387–1393. https://doi.org/10.1111/j.1471-4159.2007.05127.x
Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, Oliveira MS, Jesse CR (2013) Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by β-amyloid1-40 peptide. Neurotox Res 24(2):148–163. https://doi.org/10.1007/s12640-012-9373-0
Urrutia PJ, Mena NP, Núñez MT (2014) The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5:38. https://doi.org/10.3389/fphar.2014.00038
Pan Y, Chen Y, Yu X, Wang J, Zhang L, He Y, Zheng Y, Zheng J (2012) The synthesis of a novel chalcone and evaluation for anti-free radical activity and antagonizing the learning impairments in Alzheimer's model. Cell Physiol Biochem 29(5-6):949–958. https://doi.org/10.1159/000188336
Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, Zhang H, Wang YJ et al (2014) Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 264:173–180. https://doi.org/10.1016/j.bbr.2014.02.002
Um HS, Kang EB, Koo JH, Kim HT, Jin L, Kim EJ, Yang CH, An GY et al (2011) Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neurosci Res 69(2):161–173. https://doi.org/10.1016/j.neures.2010.10.004
Shi ZH, Nie G, Duan XL, Rouault T, Wu WS, Ning B, Zhang N, Chang YZ et al (2010) Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: implication for neuroprotection in Parkinson's disease. Antioxid Redox Signal 13(6):783–796. https://doi.org/10.1089/ars.2009.3018
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2
Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, Li P, Yuan Y et al (2018) The effects of exercise on hypothalamic neurodegeneration of Alzheimer's disease mouse model. PLoS One 13(1):e0190205. https://doi.org/10.1371/journal.pone.0190205
