Transmission through a regular vs. a superoscillating barrier

Quantum Studies: Mathematics and Foundations - Tập 5 Số 3 - Trang 413-421 - 2018
Ori Reinhardt1, Moshe Schwartz2
1Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa Israel
2School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aharonov, Y., Albert, D., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)

Aharonov, Y., Popescu, S., Rohrlich, D.: How can an infra-red photon behave as a gamma ray? Tel-Aviv University Preprint TAUP 1847–90 (1990)

Berry, M.V.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A Math. Gen. 27(11), L391–L398 (1994)

Berry, M.V.: Faster than Fourier in quantum coherence and reality. In: Anandan, J.S., Safko, J.L. (eds.) Celebration of The 60th Birthday of Yakir Aharonov, DRAFT12, August 1, 1994, pp. 55–65. World Scientific, Singapore (2013)

Kempf, A.: Black holes, bandwidths and Beethoven. J. Math. Phys. 41(4), 2360–2374 (2000)

Kempf, A., Ferreira, P.J.S.G.: Unusual properties of superoscillating particles. J. Phys. A Math. Gen. 37, 12067–12076 (2004)

Berry, M.V., Popescu, S.: Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39, 6965–6977 (2006)

Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

Levi, L.: Fitting a bandlimited signal to given points. In: IEEE Trans. Inf. Theory, vol. IT–11, pp. 372376 (1965)

Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case. Bell Syst. Tech. J. 57(5), 1371–1430 (1978)

Ferreira, P.J.S.G., Kempf, A.: The energy expense of super oscillations. In: Signal Process. XI Theories Applicat.: Proc. EUSIPCO-2002 XI Eur. Signal Process. Conf., Toulouse, France, vol. II, pp. 347–350 (2002)

Ferreira, P.J.S.G., Kempf, A.: Superoscillations: faster than the Nyquist rate. IEEE Trans. Signal Process. 54(10), 3732–3740 (2006)

Zheludev, N.I.: What diffraction limit? Nat. Mater. 7, 420–422 (2008)

Huang, F.M., Zheludev, N.I.: Super-resolution without evanescent waves. Nano Lett. 9(3), 1249–1254 (2009)

Zalevsky, Z.: Super-Resolved Imaging: Geometrical and Diffraction Approaches. Springer Briefs in Physics. Springer, New York (2011)

Zheludev, N.I.: The next photonic revolution. J. Opt. A Pure Appl. Opt. 11, 110202 (2009)

Gazit, S., et al.: Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express 17, 23920–23946 (2009)

Huang, F.M., et al.: Optical super-resolution through super-oscillations. J. Opt. A Pure Appl. Opt. 9, S285–S288 (2007)

Wong, A.M.H., Eleftheriades, G.V.: Superoscillatory radar imaging: improving radar range resolution beyond fundamental bandwidth limitations. IEEE Microw. Wirel. Compon. Lett. 22(3), 147–149 (2012)

Wong, A.M.H., Eleftheriades, G.V.: Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays. IEEE Antennas Wirel. Propag. Lett. 9, 315318 (2010)

Wong, A.M.H., Eleftheriades, G.V.: Temporal pulse compression beyond the Fourier transform limit. IEEE Trans. Microw. Theory Tech. 59(9), 2173–2179 (2011)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A Math. Theor. 44, 365304–365319 (2011)

Kempf, A.: Black holes, bandwidths and Beethoven. J. Math. Phys. 41(4), 2360–2374 (2000)

Eisenberg, E., Ashkenazy, Y.: A new time-scale for tunneling. Found. Phys. 27, 191 (1997)

Park, T.J.: Exactly solvable time-dependent problems: potentials of monotonously decreasing function of time. Bull. Korean Chem. Soc. 23, 1733 (2002)

Azbel, M.Y.: Superluminal velocity, tunneling traversal time and causality. Solid State Commun. 91, 439 (1994)

Campbell, J.: Some exact results for the Schrödinger wave equation with a time-dependent potential. J. Phys. A Math. Theor. 42(36), 365212 (2009)

Martinez, D.F., Reichl, L.E.: Transmission properties of the oscillating $$\delta $$ δ -function potential. Phys. Rev. B 64(24), 245315 (2001)

Li, W., Reichl, L.E.: Floquet scattering through a time-periodic potential. Phys. Rev. B 60(23), 15732 (1999)