Transmission through a regular vs. a superoscillating barrier
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aharonov, Y., Albert, D., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)
Aharonov, Y., Popescu, S., Rohrlich, D.: How can an infra-red photon behave as a gamma ray? Tel-Aviv University Preprint TAUP 1847–90 (1990)
Berry, M.V.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A Math. Gen. 27(11), L391–L398 (1994)
Berry, M.V.: Faster than Fourier in quantum coherence and reality. In: Anandan, J.S., Safko, J.L. (eds.) Celebration of The 60th Birthday of Yakir Aharonov, DRAFT12, August 1, 1994, pp. 55–65. World Scientific, Singapore (2013)
Kempf, A., Ferreira, P.J.S.G.: Unusual properties of superoscillating particles. J. Phys. A Math. Gen. 37, 12067–12076 (2004)
Berry, M.V., Popescu, S.: Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39, 6965–6977 (2006)
Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40(1), 43–63 (1961)
Levi, L.: Fitting a bandlimited signal to given points. In: IEEE Trans. Inf. Theory, vol. IT–11, pp. 372376 (1965)
Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case. Bell Syst. Tech. J. 57(5), 1371–1430 (1978)
Ferreira, P.J.S.G., Kempf, A.: The energy expense of super oscillations. In: Signal Process. XI Theories Applicat.: Proc. EUSIPCO-2002 XI Eur. Signal Process. Conf., Toulouse, France, vol. II, pp. 347–350 (2002)
Ferreira, P.J.S.G., Kempf, A.: Superoscillations: faster than the Nyquist rate. IEEE Trans. Signal Process. 54(10), 3732–3740 (2006)
Huang, F.M., Zheludev, N.I.: Super-resolution without evanescent waves. Nano Lett. 9(3), 1249–1254 (2009)
Zalevsky, Z.: Super-Resolved Imaging: Geometrical and Diffraction Approaches. Springer Briefs in Physics. Springer, New York (2011)
Gazit, S., et al.: Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express 17, 23920–23946 (2009)
Huang, F.M., et al.: Optical super-resolution through super-oscillations. J. Opt. A Pure Appl. Opt. 9, S285–S288 (2007)
Wong, A.M.H., Eleftheriades, G.V.: Superoscillatory radar imaging: improving radar range resolution beyond fundamental bandwidth limitations. IEEE Microw. Wirel. Compon. Lett. 22(3), 147–149 (2012)
Wong, A.M.H., Eleftheriades, G.V.: Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays. IEEE Antennas Wirel. Propag. Lett. 9, 315318 (2010)
Wong, A.M.H., Eleftheriades, G.V.: Temporal pulse compression beyond the Fourier transform limit. IEEE Trans. Microw. Theory Tech. 59(9), 2173–2179 (2011)
Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A Math. Theor. 44, 365304–365319 (2011)
Park, T.J.: Exactly solvable time-dependent problems: potentials of monotonously decreasing function of time. Bull. Korean Chem. Soc. 23, 1733 (2002)
Azbel, M.Y.: Superluminal velocity, tunneling traversal time and causality. Solid State Commun. 91, 439 (1994)
Campbell, J.: Some exact results for the Schrödinger wave equation with a time-dependent potential. J. Phys. A Math. Theor. 42(36), 365212 (2009)
Martinez, D.F., Reichl, L.E.: Transmission properties of the oscillating $$\delta $$ δ -function potential. Phys. Rev. B 64(24), 245315 (2001)