Translocation of proteins across archaeal cytoplasmic membranes
Tài liệu tham khảo
10.1073/pnas.87.12.4576
10.1073/pnas.92.13.5768
10.1073/pnas.92.2.472
10.1007/s002039900122
10.1073/pnas.93.17.9188
10.1099/00207713-47-3-657
10.1038/417063a
10.1038/371695a0
10.1080/10635150118513
10.1073/pnas.93.13.6241
10.1016/S0966-842X(01)02174-6
10.1146/annurev.cellbio.15.1.799
10.1016/S0092-8674(00)80443-2
10.1074/jbc.270.4.1663
Berks B.C Sargent F De Leeuw E Hinsley A.P Stanley N.R Jack R.L Buchanan G Palmer T (2000) A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. Biochim. Biophys. Acta 1459, 325–330.
10.1007/BF01868635
10.1083/jcb.134.2.269
10.1073/pnas.051484198
10.1093/protein/12.1.3
10.1007/s00203-001-0386-y
10.1002/pro.5560060601
10.1073/pnas.83.3.581
Shelness G.S Kanwar Y.S Blobel G (1988) cDNA-derived primary structure of the glycoprotein component of canine microsomal signal peptidase complex. J. Biol. Chem. 263, 17063–17070.
10.1016/0968-0004(92)90492-R
10.1007/s00239-001-0035-8
10.1007/BF00763177
10.1016/0076-6879(95)50105-3
10.1016/S0923-2508(01)01289-X
10.1093/emboj/21.10.2312
Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway. Microbiology 148, 3335–3346.
Mattar S Scharf B Kent S.B Rodewald K Oesterhelt D Engelhard M (1994) The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 269, 14939–14945.
Lory, S. (1994). Leader peptidases of type IV prepilins and related proteins. In: Leader Peptidases (G, von Heijne Ed.), pp. 33–48. R. G. Landes, Austin, TX
10.1111/j.1574-6976.2001.tb00575.x
10.1111/j.1574-6968.2002.tb11060.x
10.1046/j.1365-2958.1999.01286.x
10.1046/j.1365-2958.2001.02336.x
10.1128/JB.185.13.3918-3925.2003
10.1073/pnas.86.8.2728
Fekkes P Driessen A.J (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63, 161–173.
10.1038/82040
10.1074/jbc.M002885200
10.1016/S0014-5793(97)01142-3
10.1046/j.1365-2958.1998.00997.x
10.1038/344882a0
10.1074/jbc.M209238200
Macario, A.J, Lange, M, Ahring, B.K, De Macario, E.C. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 63, 1999. 923–967 . table of contents
10.1007/PL00006413
10.1016/S0092-8674(03)00110-7
10.1073/pnas.77.12.7112
10.1073/pnas.83.22.8604
Lutcke H (1995) Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur. J. Biochem. 228, 531–550.
10.1083/jcb.91.2.557
10.1083/jcb.150.1.53
10.1083/jcb.123.4.799
10.1083/jcb.117.3.493
10.1038/299691a0
10.1016/0092-8674(83)90385-9
10.1126/science.287.5456.1232
10.1093/nar/19.2.209
10.1016/S1359-0278(96)00044-2
10.1038/340482a0
10.1016/S0959-440X(99)00040-8
10.1073/pnas.85.6.1801
10.1038/356532a0
10.1093/nar/22.11.1933
10.1016/S0014-5793(97)00402-X
10.1093/nar/28.6.1365
Strub K Moss J Walter P (1991) Binding sites of the 9- and 14-kilodalton heterodimeric protein subunit of the signal recognition particle (SRP) are contained exclusively in the Alu domain of SRP RNA and contain a sequence motif that is conserved in evolution. Mol. Cell Biol. 11, 3949–3959.
Strub K Walter P (1990) Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Mol. Cell Biol. 10, 777–784.
10.1093/emboj/19.15.4164
10.1038/320081a0
10.1083/jcb.121.5.977
Brown J.D Hann B.C Medzihradszky K.F Niwa M Burlingame A.L Walter P (1994) Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression. EMBO J. 13, 4390–4400.
10.1017/S1355838299991045
10.1091/mbc.12.3.577
10.1083/jcb.95.2.470
10.1083/jcb.103.4.1167
10.1016/0092-8674(89)90129-3
10.1083/jcb.146.4.723
Miller, J.D, Walter, P. A GTPase cycle in initiation of protein translocation across the endoplasmic reticulum membrane. Ciba Found Symp. 176, 1993. 147–159 . Discussion 159–163
10.1126/science.1701272
10.1093/emboj/16.16.4880
10.1016/S0092-8674(00)81839-5
10.1073/pnas.95.17.10312
Eichler J (2000) Archaeal protein translocation crossing membranes in the third domain of life. Eur. J. Biochem. 267, 3402–3412.
10.1093/nar/21.4.847
Luirink J ten Hagen-Jongman C.M van der Weijden C.C Oudega B High S Dobberstein B Kusters R (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13, 2289–2296.
10.1016/0014-5793(95)00997-N
10.1038/385361a0
10.1006/bbrc.1994.1385
10.1074/jbc.274.19.13569
10.1155/2002/729649
10.1016/0022-2836(84)90237-7
10.1038/359744a0
Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S.C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L.C., Danchin, A., Debarbouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R., Hecker, M., Hosoya, D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, I., Le Coq, D., Masson, A., Mauel, C., Meima, R., Mellado, R.P., Moir, A., Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T., O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, T., Saxild, H.H., Scanlan, E., Schumann, W., Seegers, J.F., Sekiguchi, J., Sekowska, A., Seror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., Van Dijl, J.M., Watabe, K., Wipat, A., Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H., Zuber, U. and Ogasawara, N. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678–4683
10.1038/367657a0
10.1074/jbc.M011331200
10.1006/bbrc.1998.9923
10.1016/S0014-5793(99)00305-1
10.1073/pnas.89.4.1204
10.1107/S0907444999011348
10.1016/S1097-2765(02)00530-0
Moll R Schmidtke S Schafer G (1999) Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur. J. Biochem. 259, 441–448.
10.1016/S0014-5793(01)02996-9
10.1093/nar/gkf548
10.1128/JB.184.12.3260-3267.2002
10.1007/BF01567394
10.1093/nar/13.1.31
10.1093/nar/13.19.6969
10.1007/PL00006407
10.1021/bi001180s
10.1111/j.1365-2958.1991.tb01916.x
Moll R Schmidtke S Schaefer G (1996) A putative signal recognition particle receptor alpha subunit (SR alpha) homologue is expressed in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius . FEMS Microbiol. Lett. 137, 51–56.
10.1038/367654a0
10.1016/0014-5793(94)00367-X
10.1016/0092-8674(92)90517-G
10.1073/pnas.87.8.3107
10.1016/0092-8674(90)90111-Q
Akiyama Y Ito K (1987) Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli . EMBO J. 6, 3465–3470.
Schatz P.J Bieker K.L Ottemann K.M Silhavy T.J Beckwith J (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J. 10, 1749–1757.
10.1111/j.1365-2958.1993.tb00910.x
Swaving J Van Wely K.H Driessen A.J (1999) Preprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. J. Bacteriol. 181, 7021–7027.
Bost S Belin D (1995) A new genetic selection identifies essential residues in SecG, a component of the Escherichia coli protein export machinery. EMBO J. 14, 4412–4421.
10.1016/S0005-2736(02)00662-4
10.1093/emboj/16.10.2756
10.1046/j.1365-2958.1998.00937.x
10.1016/S0092-8674(00)81083-1
10.1093/oxfordjournals.jbchem.a003266
10.1083/jcb.141.4.887
10.1074/jbc.M004867200
10.1016/S0092-8674(00)81391-4
10.1126/science.278.5346.2123
10.1016/S0092-8674(00)81403-8
10.1093/emboj/21.5.995
Manting E.H van der Does C Driessen A.J (1997) In vivo cross-linking of the SecA and SecY subunits of the Escherichia coli preprotein translocase. J. Bacteriol. 179, 5699–5704.
10.1093/emboj/19.16.4393
10.1038/nature00827
10.1016/S0968-0004(01)02055-2
Hartmann, E. Similarity of the primary structure of Sec61β with other proteins of the translocon in prokaryotes and eukaryotes and its importance for a model of evolution of the translocon. FOCUS MUL. 2003. 18–23
Valcarcel R Weber U Jackson D.B Benes V Ansorge W Bohmann D Mlodzik M (1999) Sec61beta, a subunit of the protein translocation channel, is required during Drosophila development. J. Cell Sci. 112 (Pt 23), 4389–4396.
Nishiyama K Hanada M Tokuda H (1994) Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J. 13, 3272–3277.
10.1002/(SICI)1097-0061(199604)12:5<425::AID-YEA924>3.0.CO;2-B
Finke K Plath K Panzner S Prehn S Rapoport T.A Hartmann E Sommer T (1996) A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae . EMBO J. 15, 1482–1494.
Pogliano K.J Beckwith J (1994) Genetic and molecular characterization of the Escherichia coli secD operon and its products. J. Bacteriol. 176, 804–814.
Pogliano J.A Beckwith J (1994) SecD and SecF facilitate protein export in Escherichia coli . EMBO J. 13, 554–561.
Gardel C Benson S Hunt J Michaelis S Beckwith J (1987) secD, a new gene involved in protein export in Escherichia coli . J. Bacteriol. 169, 1286–1290.
Gardel C Johnson K Jacq A Beckwith J (1990) The secD locus of E. coli codes for two membrane proteins required for protein export. EMBO J. 9, 4205–4206.
Matsuyama S Fujita Y Mizushima S (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli . EMBO J. 12, 265–270.
10.1093/emboj/16.16.4871
10.1016/0092-8674(95)90143-4
10.1091/mbc.8.8.1449
10.1016/S0014-5793(97)01412-9
10.1073/pnas.95.5.2250
10.1093/emboj/19.4.542
10.1046/j.1365-2958.2002.02972.x
10.1038/35020586
10.1074/jbc.M105793200
10.1016/S0092-8674(00)81115-0
10.1016/0092-8674(95)90330-5
10.1093/embo-reports/kve108
10.1038/357047a0
10.1016/0092-8674(95)90077-2
10.1093/emboj/20.1.262
10.1074/jbc.275.19.14550
10.1006/jmbi.1998.2413
10.1046/j.1365-2958.2003.03346.x
10.1016/S0092-8674(00)80767-9
10.1038/sj.embor.embor826
Craven R.A Egerton M Stirling C.J (1996) A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J. 15, 2640–2650.
Beckerich J.M Boisrame-Baudevin A Gaillardin C (1998) Yarrowia lipolytica: a model organism for protein secretion studies. Int. Microbiol. 1, 123–130.
10.1016/0092-8674(93)90483-7
10.1021/bi00052a004
10.1016/0022-5193(83)90291-6
10.1111/j.1699-0463.1996.tb00724.x
10.1016/0042-6822(91)90981-G
10.1093/oxfordjournals.molbev.a025579
10.1099/0022-1317-43-1-57
10.1128/JB.185.2.405-412.2003
10.1093/emboj/18.4.1049
Irihimovitch, V, Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 2003
10.1074/jbc.M908916199
10.1074/jbc.274.32.22693
10.1073/pnas.140216497
10.1038/35073038
10.1099/mic.0.25900-0
Cline K Ettinger W.F Theg S.M (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267, 2688–2696.
10.1074/jbc.270.4.1657
10.1126/science.278.5342.1467
10.1093/emboj/17.1.101
10.1093/emboj/17.13.3640
10.1093/emboj/20.10.2472
10.1093/emboj/cdg081
Chaddock A.M Mant A Karnauchov I Brink S Herrmann R.G Klosgen R.B Robinson C (1995) A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the ΔpH-dependent thylakoidal protein translocase. EMBO J. 14, 2715–2722.
10.1046/j.1365-2958.1996.00114.x
10.1074/jbc.274.19.13223
Halbig D Wiegert T Blaudeck N Freudl R Sprenger G.A (1999) The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur. J. Biochem. 263, 543–551.
10.1046/j.1365-2958.2001.02253.x
10.1007/s00203-002-0408-4
10.1046/j.1365-2958.2002.03090.x
10.1128/JB.185.4.1478-1483.2003
10.1093/emboj/18.11.2982
10.1083/jcb.136.4.823
10.1007/s002030050764
10.1074/jbc.275.16.11591
10.1006/jmbi.2002.5431
10.1006/bbrc.2002.6420
10.1016/S0014-5793(01)02428-0
10.1093/emboj/16.13.3851
10.1128/JB.185.9.2811-2819.2003
10.1046/j.1365-2958.2001.02514.x
10.1016/S0092-8674(00)81149-6
10.1083/jcb.146.1.45
10.1083/jcb.147.2.267
10.1016/S0014-5793(01)02626-6
10.1016/S0014-5793(02)03069-7
10.1016/S0014-5793(01)02904-0
10.1021/bi026142i
10.1074/jbc.274.51.36073
10.1046/j.1432-1327.2001.02263.x
10.1083/jcb.200105149
10.1083/jcb.200202048
10.1016/S0022-2836(02)00820-3
Wu L.F Ize B Chanal A Quentin Y Fichant G (2000) Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J. Mol. Microbiol. Biotechnol. 2, 179–189.
10.1074/jbc.M004887200