Translocation of proteins across archaeal cytoplasmic membranes

FEMS Microbiology Reviews - Tập 28 - Trang 3-24 - 2004
Mechthild Pohlschröder1, Kieran Dilks1, Nicholas J Hand1, R Wesley Rose1
1Department of Biology, University of Pennsylvania, 415 University Avenue, 201 Leidy Labs, Philadelphia, PA 19104-6018, USA

Tài liệu tham khảo

10.1073/pnas.87.12.4576 10.1073/pnas.92.13.5768 10.1073/pnas.92.2.472 10.1007/s002039900122 10.1073/pnas.93.17.9188 10.1099/00207713-47-3-657 10.1038/417063a 10.1038/371695a0 10.1080/10635150118513 10.1073/pnas.93.13.6241 10.1016/S0966-842X(01)02174-6 10.1146/annurev.cellbio.15.1.799 10.1016/S0092-8674(00)80443-2 10.1074/jbc.270.4.1663 Berks B.C Sargent F De Leeuw E Hinsley A.P Stanley N.R Jack R.L Buchanan G Palmer T (2000) A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. Biochim. Biophys. Acta 1459, 325–330. 10.1007/BF01868635 10.1083/jcb.134.2.269 10.1073/pnas.051484198 10.1093/protein/12.1.3 10.1007/s00203-001-0386-y 10.1002/pro.5560060601 10.1073/pnas.83.3.581 Shelness G.S Kanwar Y.S Blobel G (1988) cDNA-derived primary structure of the glycoprotein component of canine microsomal signal peptidase complex. J. Biol. Chem. 263, 17063–17070. 10.1016/0968-0004(92)90492-R 10.1007/s00239-001-0035-8 10.1007/BF00763177 10.1016/0076-6879(95)50105-3 10.1016/S0923-2508(01)01289-X 10.1093/emboj/21.10.2312 Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway. Microbiology 148, 3335–3346. Mattar S Scharf B Kent S.B Rodewald K Oesterhelt D Engelhard M (1994) The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 269, 14939–14945. Lory, S. (1994). Leader peptidases of type IV prepilins and related proteins. In: Leader Peptidases (G, von Heijne Ed.), pp. 33–48. R. G. Landes, Austin, TX 10.1111/j.1574-6976.2001.tb00575.x 10.1111/j.1574-6968.2002.tb11060.x 10.1046/j.1365-2958.1999.01286.x 10.1046/j.1365-2958.2001.02336.x 10.1128/JB.185.13.3918-3925.2003 10.1073/pnas.86.8.2728 Fekkes P Driessen A.J (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63, 161–173. 10.1038/82040 10.1074/jbc.M002885200 10.1016/S0014-5793(97)01142-3 10.1046/j.1365-2958.1998.00997.x 10.1038/344882a0 10.1074/jbc.M209238200 Macario, A.J, Lange, M, Ahring, B.K, De Macario, E.C. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 63, 1999. 923–967 . table of contents 10.1007/PL00006413 10.1016/S0092-8674(03)00110-7 10.1073/pnas.77.12.7112 10.1073/pnas.83.22.8604 Lutcke H (1995) Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur. J. Biochem. 228, 531–550. 10.1083/jcb.91.2.557 10.1083/jcb.150.1.53 10.1083/jcb.123.4.799 10.1083/jcb.117.3.493 10.1038/299691a0 10.1016/0092-8674(83)90385-9 10.1126/science.287.5456.1232 10.1093/nar/19.2.209 10.1016/S1359-0278(96)00044-2 10.1038/340482a0 10.1016/S0959-440X(99)00040-8 10.1073/pnas.85.6.1801 10.1038/356532a0 10.1093/nar/22.11.1933 10.1016/S0014-5793(97)00402-X 10.1093/nar/28.6.1365 Strub K Moss J Walter P (1991) Binding sites of the 9- and 14-kilodalton heterodimeric protein subunit of the signal recognition particle (SRP) are contained exclusively in the Alu domain of SRP RNA and contain a sequence motif that is conserved in evolution. Mol. Cell Biol. 11, 3949–3959. Strub K Walter P (1990) Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Mol. Cell Biol. 10, 777–784. 10.1093/emboj/19.15.4164 10.1038/320081a0 10.1083/jcb.121.5.977 Brown J.D Hann B.C Medzihradszky K.F Niwa M Burlingame A.L Walter P (1994) Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression. EMBO J. 13, 4390–4400. 10.1017/S1355838299991045 10.1091/mbc.12.3.577 10.1083/jcb.95.2.470 10.1083/jcb.103.4.1167 10.1016/0092-8674(89)90129-3 10.1083/jcb.146.4.723 Miller, J.D, Walter, P. A GTPase cycle in initiation of protein translocation across the endoplasmic reticulum membrane. Ciba Found Symp. 176, 1993. 147–159 . Discussion 159–163 10.1126/science.1701272 10.1093/emboj/16.16.4880 10.1016/S0092-8674(00)81839-5 10.1073/pnas.95.17.10312 Eichler J (2000) Archaeal protein translocation crossing membranes in the third domain of life. Eur. J. Biochem. 267, 3402–3412. 10.1093/nar/21.4.847 Luirink J ten Hagen-Jongman C.M van der Weijden C.C Oudega B High S Dobberstein B Kusters R (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13, 2289–2296. 10.1016/0014-5793(95)00997-N 10.1038/385361a0 10.1006/bbrc.1994.1385 10.1074/jbc.274.19.13569 10.1155/2002/729649 10.1016/0022-2836(84)90237-7 10.1038/359744a0 Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S.C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L.C., Danchin, A., Debarbouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R., Hecker, M., Hosoya, D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, I., Le Coq, D., Masson, A., Mauel, C., Meima, R., Mellado, R.P., Moir, A., Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T., O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, T., Saxild, H.H., Scanlan, E., Schumann, W., Seegers, J.F., Sekiguchi, J., Sekowska, A., Seror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., Van Dijl, J.M., Watabe, K., Wipat, A., Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H., Zuber, U. and Ogasawara, N. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678–4683 10.1038/367657a0 10.1074/jbc.M011331200 10.1006/bbrc.1998.9923 10.1016/S0014-5793(99)00305-1 10.1073/pnas.89.4.1204 10.1107/S0907444999011348 10.1016/S1097-2765(02)00530-0 Moll R Schmidtke S Schafer G (1999) Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur. J. Biochem. 259, 441–448. 10.1016/S0014-5793(01)02996-9 10.1093/nar/gkf548 10.1128/JB.184.12.3260-3267.2002 10.1007/BF01567394 10.1093/nar/13.1.31 10.1093/nar/13.19.6969 10.1007/PL00006407 10.1021/bi001180s 10.1111/j.1365-2958.1991.tb01916.x Moll R Schmidtke S Schaefer G (1996) A putative signal recognition particle receptor alpha subunit (SR alpha) homologue is expressed in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius . FEMS Microbiol. Lett. 137, 51–56. 10.1038/367654a0 10.1016/0014-5793(94)00367-X 10.1016/0092-8674(92)90517-G 10.1073/pnas.87.8.3107 10.1016/0092-8674(90)90111-Q Akiyama Y Ito K (1987) Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli . EMBO J. 6, 3465–3470. Schatz P.J Bieker K.L Ottemann K.M Silhavy T.J Beckwith J (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J. 10, 1749–1757. 10.1111/j.1365-2958.1993.tb00910.x Swaving J Van Wely K.H Driessen A.J (1999) Preprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. J. Bacteriol. 181, 7021–7027. Bost S Belin D (1995) A new genetic selection identifies essential residues in SecG, a component of the Escherichia coli protein export machinery. EMBO J. 14, 4412–4421. 10.1016/S0005-2736(02)00662-4 10.1093/emboj/16.10.2756 10.1046/j.1365-2958.1998.00937.x 10.1016/S0092-8674(00)81083-1 10.1093/oxfordjournals.jbchem.a003266 10.1083/jcb.141.4.887 10.1074/jbc.M004867200 10.1016/S0092-8674(00)81391-4 10.1126/science.278.5346.2123 10.1016/S0092-8674(00)81403-8 10.1093/emboj/21.5.995 Manting E.H van der Does C Driessen A.J (1997) In vivo cross-linking of the SecA and SecY subunits of the Escherichia coli preprotein translocase. J. Bacteriol. 179, 5699–5704. 10.1093/emboj/19.16.4393 10.1038/nature00827 10.1016/S0968-0004(01)02055-2 Hartmann, E. Similarity of the primary structure of Sec61β with other proteins of the translocon in prokaryotes and eukaryotes and its importance for a model of evolution of the translocon. FOCUS MUL. 2003. 18–23 Valcarcel R Weber U Jackson D.B Benes V Ansorge W Bohmann D Mlodzik M (1999) Sec61beta, a subunit of the protein translocation channel, is required during Drosophila development. J. Cell Sci. 112 (Pt 23), 4389–4396. Nishiyama K Hanada M Tokuda H (1994) Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J. 13, 3272–3277. 10.1002/(SICI)1097-0061(199604)12:5<425::AID-YEA924>3.0.CO;2-B Finke K Plath K Panzner S Prehn S Rapoport T.A Hartmann E Sommer T (1996) A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae . EMBO J. 15, 1482–1494. Pogliano K.J Beckwith J (1994) Genetic and molecular characterization of the Escherichia coli secD operon and its products. J. Bacteriol. 176, 804–814. Pogliano J.A Beckwith J (1994) SecD and SecF facilitate protein export in Escherichia coli . EMBO J. 13, 554–561. Gardel C Benson S Hunt J Michaelis S Beckwith J (1987) secD, a new gene involved in protein export in Escherichia coli . J. Bacteriol. 169, 1286–1290. Gardel C Johnson K Jacq A Beckwith J (1990) The secD locus of E. coli codes for two membrane proteins required for protein export. EMBO J. 9, 4205–4206. Matsuyama S Fujita Y Mizushima S (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli . EMBO J. 12, 265–270. 10.1093/emboj/16.16.4871 10.1016/0092-8674(95)90143-4 10.1091/mbc.8.8.1449 10.1016/S0014-5793(97)01412-9 10.1073/pnas.95.5.2250 10.1093/emboj/19.4.542 10.1046/j.1365-2958.2002.02972.x 10.1038/35020586 10.1074/jbc.M105793200 10.1016/S0092-8674(00)81115-0 10.1016/0092-8674(95)90330-5 10.1093/embo-reports/kve108 10.1038/357047a0 10.1016/0092-8674(95)90077-2 10.1093/emboj/20.1.262 10.1074/jbc.275.19.14550 10.1006/jmbi.1998.2413 10.1046/j.1365-2958.2003.03346.x 10.1016/S0092-8674(00)80767-9 10.1038/sj.embor.embor826 Craven R.A Egerton M Stirling C.J (1996) A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J. 15, 2640–2650. Beckerich J.M Boisrame-Baudevin A Gaillardin C (1998) Yarrowia lipolytica: a model organism for protein secretion studies. Int. Microbiol. 1, 123–130. 10.1016/0092-8674(93)90483-7 10.1021/bi00052a004 10.1016/0022-5193(83)90291-6 10.1111/j.1699-0463.1996.tb00724.x 10.1016/0042-6822(91)90981-G 10.1093/oxfordjournals.molbev.a025579 10.1099/0022-1317-43-1-57 10.1128/JB.185.2.405-412.2003 10.1093/emboj/18.4.1049 Irihimovitch, V, Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 2003 10.1074/jbc.M908916199 10.1074/jbc.274.32.22693 10.1073/pnas.140216497 10.1038/35073038 10.1099/mic.0.25900-0 Cline K Ettinger W.F Theg S.M (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J. Biol. Chem. 267, 2688–2696. 10.1074/jbc.270.4.1657 10.1126/science.278.5342.1467 10.1093/emboj/17.1.101 10.1093/emboj/17.13.3640 10.1093/emboj/20.10.2472 10.1093/emboj/cdg081 Chaddock A.M Mant A Karnauchov I Brink S Herrmann R.G Klosgen R.B Robinson C (1995) A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the ΔpH-dependent thylakoidal protein translocase. EMBO J. 14, 2715–2722. 10.1046/j.1365-2958.1996.00114.x 10.1074/jbc.274.19.13223 Halbig D Wiegert T Blaudeck N Freudl R Sprenger G.A (1999) The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur. J. Biochem. 263, 543–551. 10.1046/j.1365-2958.2001.02253.x 10.1007/s00203-002-0408-4 10.1046/j.1365-2958.2002.03090.x 10.1128/JB.185.4.1478-1483.2003 10.1093/emboj/18.11.2982 10.1083/jcb.136.4.823 10.1007/s002030050764 10.1074/jbc.275.16.11591 10.1006/jmbi.2002.5431 10.1006/bbrc.2002.6420 10.1016/S0014-5793(01)02428-0 10.1093/emboj/16.13.3851 10.1128/JB.185.9.2811-2819.2003 10.1046/j.1365-2958.2001.02514.x 10.1016/S0092-8674(00)81149-6 10.1083/jcb.146.1.45 10.1083/jcb.147.2.267 10.1016/S0014-5793(01)02626-6 10.1016/S0014-5793(02)03069-7 10.1016/S0014-5793(01)02904-0 10.1021/bi026142i 10.1074/jbc.274.51.36073 10.1046/j.1432-1327.2001.02263.x 10.1083/jcb.200105149 10.1083/jcb.200202048 10.1016/S0022-2836(02)00820-3 Wu L.F Ize B Chanal A Quentin Y Fichant G (2000) Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J. Mol. Microbiol. Biotechnol. 2, 179–189. 10.1074/jbc.M004887200