Translational genomics in personalized medicine – scientific challenges en route to clinical practice
Tóm tắt
In the area of omics and translational bio(medical)sciences, there is an increasing need to integrate, normalize, analyze, store and protect genomics data. Large datasets and scientific knowledge are rationally combined into valuable clinical information that ultimately will benefit human healthcare and are en route to clinical practice. Data from biomarker discovery and Next Generation Sequencing (NGS) are very valuable and will combine in comprehensive analyses to stratify medicine and guide therapy planning and ultimately benefit patients. However, the combination into useful and applicable information and knowledge is not trivial. Personalized medicine generally promises to result in both higher quality in treatment for individual patients and in lower costs in health care since patients will be offered only such therapies that are more effective for them and treatments that will not be safe or effective will be avoided. Recent advancements in biomedical and genomic sciences have paved the way to translate such research into clinical practice and health policies. However, the move towards greater personalization of medicine also comes along with challenges in the development of novel diagnostic and therapeutic tools in a complex framework that assumes that the use of genomic information is part of a translational continuum, which spans from basic to clinical research, preclinical and clinical trials, to policy research and the analysis of health and economic outcomes. The use of next-generation genomic technologies to improve the quality of life and efficiency of healthcare delivered to patients has become a mainstay theme in the field as benefits derived from such approaches include reducing a patient’s need to go through ineffective therapies, lowering side- and off-target effects of drugs, prescribing prophylactic therapies before acute exacerbations, and reducing expenditures. As such, personalized medicine promises to increase the quality of clinical care and, in some cases, to decrease health care costs. Besides the scientific challenges, there are several economic hurdles. For instance, healthcare providers need to know, whether the approach of personalized healthcare is affordable and worth the expenses. In addition, the economic rationale of personalized healthcare includes not only the reduction of the high expense of hospitalizations, the predictive diagnostics that will help to reduce cost through prevention or the increased efficacy of personalized therapies needs to offset prices of drugs. There are also several factors that influence payer adoption, coverage and reimbursement; the strength of evidence drives payers‘ decisions about coverage and reimbursement, varies widely depending on the personalized healthcare technology applied and regulation and cost-effectiveness seem to be increasingly associated with reimbursement, which is strongly influenced by professional society guidelines. In general, we see the following main obstacles to the advancement of personalized medicine: (i) the scientific challenges (a poor understanding of molecular mechanisms or a lack of molecular markers associated with some diseases, for example), (ii) the economic challenges (poorly aligned incentives), and (iii) operational issues in public healthcare systems. The operational issues can often be largely resolved within a particular stakeholder group, but correcting the incentive structure and modifying the relationships between stakeholders is more complex. This article focuses on the scientific difficulties that remain to translate genomics technologies into clinical practice and reviews recent technological advances in genomics and the challenges and potential benefits of translating this knowledge into clinical practice, with a particular focus on their applications in oncology.
Tài liệu tham khảo
454 Life Sciences, http://www.454lifesciences.com
Chin L, Gray JW: Translating insights from the cancer genome into clinical practice. Nature 2008, 452: 553–563. 10.1038/nature06914
Collins FS, Green ED, Guttmacher AE, Guyer MS: A vision for the future of genomics research. Nature 2003,422(6934):835–847. 10.1038/nature01626
Constance JA: The future of molecular diagnostics. Innovative technologies driving market opportunities in personalized medicine. Business Insights; 2010.
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009,361(2):123–134. Epub Jun 24 10.1056/NEJMoa0900212
Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C: Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010, 28: 2512–2519. 10.1200/JCO.2009.26.9589
Haga SB, Burke W: Using pharmacogenetics to improve drug safety and efficacy. JAMA 2004,291(23):2869–2871. 10.1001/jama.291.23.2869
Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010, 140: 209–221. 10.1016/j.cell.2009.12.040
Illumina, http://www.illumina.com
Ion Torrent, http://www.iontorrent.com
Khoury MJ, Jones K, Grosse SD: Quantifying the health benefits of genetic tests: the importance of a population perspective. Genet Med 2006,8(3):191–195. 10.1097/01.gim.0000206278.37405.25
Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, De LaVega FM, Kinzler KW, Vogelstein B, Diaz LA Jr, Velculescu VE: Development of personalized tumor biomarkers using massively parallel sequencing. Sci Tansl Med 2010,2(20):20ra14. 10.1126/scitranslmed.3000702
Life Technologies, http://www.lifetechnologies.com
Pacific Biosciences, http://www.pacbiosciences.com
Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N: RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF. Nature 2010, 464: 427–430. 10.1038/nature08902
RainDance Technologies, http://www.raindancetechnologies.com
Rossbach M: Small non-coding RNAs as novel therapeutics. Curr Mol Med 2010, 10: 4.
Spear BB, Heath-Chiozzi M, Huff J: Clinical application of pharmacogenetics. Trends Mol Med 2001,7(5):201–204. 10.1016/S1471-4914(01)01986-4
Thomas U: Genomeweb June 24th. 2011.
Wolinsky H: The thousand-dollar genome. Genetic brinkmanship or personalized medicine? EMBO Rep 2007, 8: 900–903. 10.1038/sj.embor.7401070