Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1

Insect Molecular Biology - Tập 11 Số 6 - Trang 619-625 - 2002
Michael B. Gill1, David J. Ellar2
1Beth Israel Deaconess Medical Center/Harvard Institutes of Medicine, Boston, Massachusetts, USA,
2Department of Biochemistry, Cambridge University, Cambridge, UK

Tóm tắt

AbstractThe bacterium Bacillus thuringiensis synthesizes toxins (δ‐endotoxins) that are highly specific for insects. Once ingested, the activated form of the toxin binds to a specific receptor(s) located on the midgut epithelial cells, inserts into the membrane causing the formation of leakage pores and eventual death of the susceptible insect larvae. Manduca sexta larvae are highly susceptible to Cry1Ac1, a toxin that is believed to bind M. sexta Aminopeptidase N, a glycoprotein located on the apical membrane. However, the binding data obtained to date only support the interaction of Cry1Ac1 with APN in vitro. To explore the in vivo role of APN, we have utilized the GAL4 enhancer trap technique to drive the expression of M. sexta APN in both midgut and mesodermal tissues of Cry1Ac1 insensitive Drosophila larvae. Transgenic Drosophila fed the toxin were now killed, demonstrating that APN can function as a receptor for Cry1Ac1 in vivo.

Từ khóa


Tài liệu tham khảo

Bell R.A.andJoachim F.G.(1976) Techniques for rearing laboratory colonies of tobacco.

10.1016/0003-2697(76)90527-3

Brand A.H., 1993, Targeted gene expression as a means of altering cell fate and generating dominant phenotypes, Development, 118, 401, 10.1242/dev.118.2.401

10.1016/0022-2011(92)90004-N

10.1111/j.1432-1033.1993.tb17979.x

10.1111/j.1432-1033.1997.t01-1-00748.x

10.1016/S0965-1748(99)00027-2

10.1074/jbc.270.45.27277

10.1038/362630a0

10.1139/g96-023

10.1016/0003-2697(82)90677-7

Hidalgo A., 1995, Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS, Development, 121, 3702, 10.1242/dev.121.11.3703

10.1128/MMBR.53.2.242-255.1989

10.1016/S0167-4838(97)00222-7

10.1016/S0305-0491(98)10091-3

10.1016/S0378-1119(98)00199-1

10.1111/j.1365-2958.1994.tb00324.x

10.1074/jbc.270.30.17765

10.1098/rspb.1991.0084

Laemmli, U.K., 1973, Maturation of the Head of Bacteriophage T4, J Mol Biol, 80, 575, 10.1016/0022-2836(73)90198-8

Lindsley D.L., 1992, The Genome of Drosophila Melanogaster

10.1016/S0021-9258(19)52451-6

10.1006/prep.1999.1122

10.1016/S0965-1748(97)00052-0

10.1093/emboj/16.14.4184

10.1016/S0014-5793(99)01327-7

10.1271/bbb.62.718

10.1271/bbb.62.727

Oltean D.I., 1999, Partial purification and characterisation of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA, Appl Environ Microbiol, 65, 4760, 10.1128/AEM.65.11.4760-4766.1999

10.1006/meth.1998.0592

Sambrook J., 1989, Molecular Cloning: a Laboratory Manual

Sangadala S., 1994, A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+(–) K+ efflux in vitro, J Biol Chem, 269, 10088, 10.1016/S0021-9258(17)36993-4

10.1016/S0014-5793(97)00801-6

10.1042/bj1980101

Thomas W.E., 1983, Bacillus thuringiensis var. israelensis crystal δ‐endotoxin: Effects on insect and mammalian cells in vitro and in vivo, J Cell Sci, 60, 181, 10.1242/jcs.60.1.181

10.1074/jbc.270.10.5490

10.1016/0300-9629(87)90334-3

Yaoi K., 1997, Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin, Eur, 246, 652

10.1016/S0167-4781(98)00250-4