Transformation groups on complex Stiefel manifolds

Wu-Yi Hsiang1, Per Tomter2
1University of California, Berkeley, USA
2University of Oslo, Oslo, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allday, C. &Halperin, S., Lie group actions on spaces of finite rank.Quart. J. Math. Oxford Ser. (2), 29 (1978), 63–76. Borel, A. Et al., Seminar on transformation groups.Ann. of Math. Stud. 46. Princeton, N.J. Princeton University Press, 1961. Borel, A., Sur la cohomologie des espaces fibrès principaux et des espaces homogènes de groupes de Lie compacts.Ann. of Math., 57 (1953), 115–207. —, La cohomologie mod 2 de certains espaces homogènes.Comment. Math. Helv., 27 (1953), 165–197. Borel, A. &Hirzebruch, F., Characteristic classes and homogeneous spaces. I:Amer. J. Math., 80 (1958), 485–538. II: 81 (1959), 351–382, III: 82 (1960), 491–504. Borel, A. &Serre, J.-P., Groupes de Lie et puissances reduites de Steenrod.Amer. J. Math., 75 (1953), 409–448. Davis. M., Multiaxial actions on manifolds.Springer Lecture Notes in Math. 643. Berlin 1978. Dold, A., Über fasernweise Homotopieäquivalenz von Faserräumen.Math. Z., 62 (1955), 111–136. Hsiang, W. Y.,Cohomology theory of topological transformation groups. Erg. der Math. Bd. 85. Springer Verlag. 1975. Hsiang, W. Y., On characteristic, classes of compact homogeneous spaces and their applications in compact transformation groups. To appear. Hsiang, W. Y. &Su, J. C., On the classification of transitive effective actions on Stiefel manifolds.Trans. Amer. Math. Soc., 130 (1968), 322–336. James, I. M.,The topology of Stiefel manifolds. London Math. Ser. Lect. Not. 24. Cambridge Univ. Press (1976). Suter, U., Die nicht-existenz von Schnittflachen Komplexes Stiefel Mannigfaltigkeiten.Math. Z., 113 (1970), 196–204.