Các RNA nhỏ nguồn gốc từ chuyển giao RNA ở thực vật

Springer Science and Business Media LLC - Tập 61 - Trang 155-161 - 2017
Lei Zhu1,2, David W. Ow1, Zhicheng Dong1
1Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Thay vì các sản phẩm phân hủy ngẫu nhiên, các RNA nhỏ nguồn gốc từ chuyển giao RNA dài từ 18 đến 40 nucleotide (nt) (tsRNAs) là các loài RNA được tạo ra đặc biệt từ các pre-RNA hoặc các chuyển giao RNA trưởng thành ở archaea, vi khuẩn và eukaryotes. Các nghiên cứu gần đây từ các hệ thống động vật đã chỉ ra rằng tsRNAs là các RNA không mã hóa quan trọng, điều chỉnh biểu hiện gen ở mức độ phiên mã và/hoặc sau phiên mã. Chúng liên quan đến nhiều quá trình sinh học khác nhau, chẳng hạn như sự tăng trưởng tế bào, sự hình thành u bướu, phản ứng với căng thẳng và di truyền epigenetic giữa các thế hệ. Trong bài đánh giá này, chúng tôi sẽ tóm tắt sự phát hiện, sinh tổng hợp và chức năng của tsRNAs ở thực vật bậc cao. Ngoài ra, phân tích về tsRNAs từ thực vật bậc thấp cũng được trình bày.

Từ khóa

#tsRNAs #RNA không mã hóa #phiên mã #di truyền epigenetic #thực vật bậc cao #thực vật bậc thấp

Tài liệu tham khảo

Abelson, J., Trotta, C.R., and Li, H. (1998). tRNA splicing. J Biol Chem 273, 12685–12688. Alves, C.S., Vicentini, R., Duarte, G.T., Pinoti, V.F., Vincentz, M., and Nogueira, F.T.S. (2017). Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol Biol 93, 35–48. Bariola, P.A., Howard, C.J., Taylor, C.B., Verburg, M.T., Jaglan, V.D., and Green, P.J. (1994). The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J 6, 673–685. Ceballos, M., and Vioque, A. (2007). tRNase Z. Protein Pept Lett 14, 137–145. Chen, C.J., Liu, Q., Zhang, Y.C., Qu, L.H., Chen, Y.Q., and Gautheret, D. (2011). Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8, 538–547. Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400. Cognat, V., Morelle, G., Megel, C., Lalande, S., Molinier, J., Vincent, T., Small, I., Duchêne, A.M., and Maréchal-Drouard, L. (2017). The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 45, 3460–3472. Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W.S., Green, P.J., Barton, G.J., and Hutvagner, G. (2009). Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160. Coruh, C., Cho, S.H., Shahid, S., Liu, Q., Wierzbicki, A., and Axtell, M.J. (2015). Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell 27, 2148–2162. Frank, D.N., and Pace, N.R. (1998). Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67, 153–180. Fu, H., Feng, J., Liu, Q., Sun, F., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2009). Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583, 437–442. Gebetsberger, J., and Polacek, N. (2013). Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 10, 1798–1806. Gruissem, W., Prescott, D.M., Greenberg, B.M., and Hallick, R.B. (1982). Transcription of E. coli and Euglena chloroplast tRNA gene clusters and processing of polycistronic transcripts in a HeLa cell-free system. Cell 30, 81–92. Guleria, P., Mahajan, M., Bhardwaj, J., and Yadav, S.K. (2011). Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9, 183–199. Hackenberg, M., Huang, P.J., Huang, C.Y., Shi, B.J., Gustafson, P., and Langridge, P. (2013). A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and-sufficient conditions. DNA Res 20, 109–125. Hanada, T., Weitzer, S., Mair, B., Bernreuther, C., Wainger, B.J., Ichida, J., Hanada, R., Orthofer, M., Cronin, S.J., Komnenovic, V., Minis, A., Sato, F., Mimata, H., Yoshimura, A., Tamir, I., Rainer, J., Kofler, R., Yaron, A., Eggan, K.C., Woolf, C.J., Glatzel, M., Herbst, R., Martinez, J., and Penninger, J.M. (2013). CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495, 474–480. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z., and Kay, M.A. (2010). Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695. Honda, S., Loher, P., Shigematsu, M., Palazzo, J.P., Suzuki, R., Imoto, I., Rigoutsos, I., and Kirino, Y. (2015). Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 112, e3816–E3825. Hsieh, L.C., Lin, S.I., Shih, A.C.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151, 2120–2132. Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P., and Anderson, P. (2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43, 613–623. Kruszka, K., Barneche, F., Guyot, R., Ailhas, J., Meneau, I., Schiffer, S., Marchfelder, A., and Echeverria, M. (2003). Plant dicistronic tRNAsnoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 22, 621–632. LeBrasseur, N.D., MacIntosh, G.C., Perez-Amador, M.A., Saitoh, M., and Green, P.J. (2002). Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J 29, 393–403. Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23, 2639–2649. Loizeau, K., Qu, Y., Depp, S., Fiechter, V., Ruwe, H., Lefebvre-Legendre, L., Schmitz-Linneweber, C., and Goldschmidt-Clermont, M. (2014). Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res 42, 3286–3297. Loss-Morais, G., Waterhouse, P.M., and Margis, R. (2013). Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct 8, 6. Martinez, G., Choudury, S.G., and Slotkin, R.K. (2017). tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res 45, 5142–5152. Maute, R.L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., and Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 110, 1404–1409. Nowacka, M., Strozycki, P.M., Jackowiak, P., Hojka-Osinska, A., Szymanski, M., and Figlerowicz, M. (2013). Identification of stable, high copy number, medium-sized RNA degradation intermediates that accumulate in plants under non-stress conditions. Plant Mol Biol 83, 191–204. Raina, M., and Ibba, M. (2014). tRNAs as regulators of biological processes. Front Genet 5, 171. Schorn, A.J., Gutbrod, M.J., LeBlanc, C., and Martienssen, R. (2017). LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e11. Schramm, L., and Hernandez, N. (2002). Recruitment of RNA polymerase III to its target promoters. Genes Dev 16, 2593–2620. Sharma, U., Conine, C.C., Shea, J.M., Boskovic, A., Derr, A.G., Bing, X.Y., Belleannee, C., Kucukural, A., Serra, R.W., Sun, F., Song, L., Carone, B.R., Ricci, E.P., Li, X.Z., Fauquier, L., Moore, M.J., Sullivan, R., Mello, C.C., Garber, M., and Rando, O.J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396. Thompson, D.M., Lu, C., Green, P.J., and Parker, R. (2008). tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095–2103. Thompson, D.M., and Parker, R. (2009). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43–50. Tocchini-Valentini, G.D., Fruscoloni, P., and Tocchini-Valentini, G.P. (2009). Processing of multiple-intron-containing pretRNA. Proc Natl Acad Sci USA 106, 20246–20251. Weiner, A.M. (2004). tRNA maturation: RNA polymerization without a nucleic acid template. Curr Biol 14, R883–R885. Zhang, S., Sun, L., and Kragler, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150, 378–387.