Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses

Springer Science and Business Media LLC - Tập 13 - Trang 1-15 - 2012
Haili Zhang1, Fengguang Guo1, Huaijun Zhou2, Guan Zhu1,3,4
1Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, USA
2Department of Animal Science, University of California, Davis, USA
3Faculty of Genetics Program, Texas A&M University, College Station, USA
4Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, China

Tóm tắt

Cryptosporidium parvum is a globally distributed zoonotic parasite and an important opportunistic pathogen in immunocompromised patients. Little is known on the metabolic dynamics of the parasite, and study is hampered by the lack of molecular and genetic tools. Here we report the development of the first Agilent microarray for C. parvum (CpArray15K) that covers all predicted ORFs in the parasite genome. Global transcriptome analysis using CpArray15K coupled with real-time qRT-PCR uncovered a number of unique metabolic features in oocysts, the infectious and environmental stage of the parasite. Oocyst stage parasites were found to be highly active in protein synthesis, based on the high transcript levels of genes associated with ribosome biogenesis, transcription and translation. The proteasome and ubiquitin associated components were also highly active, implying that oocysts might employ protein degradation pathways to recycle amino acids in order to overcome the inability to synthesize amino acids de novo. Energy metabolism in oocysts was featured by the highest level of expression of lactate dehydrogenase (LDH) gene. We also studied parasite responses to UV-irradiation, and observed complex and dynamic regulations of gene expression. Notable changes included increased transcript levels of genes involved in DNA repair and intracellular trafficking. Among the stress-related genes, TCP-1 family members and some thioredoxin-associated genes appear to play more important roles in the recovery of UV-induced damages in the oocysts. Our observations also suggest that UV irradiation of oocysts results in increased activities in cytoskeletal rearrangement and intracellular membrane trafficking. CpArray15K is the first microarray chip developed for C. parvum, which provides the Cryptosporidium research community a needed tool to study the parasite transcriptome and functional genomics. CpArray15K has been successfully used in profiling the gene expressions in the parasite oocysts as well as their responses to UV-irradiation. These observations shed light on how the parasite oocysts might adapt and respond to the hostile external environment and associated stress such as UV irradiation.

Tài liệu tham khảo

O'Connor RM, Shaffie R, Kang G, Ward HD: Cryptosporidiosis in patients with HIV/AIDS. AIDS. 2011, 25 (5): 549-560. 10.1097/QAD.0b013e3283437e88. Xiao L: Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol. 2010, 124 (1): 80-89. 10.1016/j.exppara.2009.03.018. Davies AP, Chalmers RM: Cryptosporidiosis. BMJ. 2009, 339: b4168-10.1136/bmj.b4168. Xiao L, Feng Y: Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol. 2008, 52 (3): 309-323. 10.1111/j.1574-695X.2008.00377.x. Tzipori S, Widmer G: A hundred-year retrospective on cryptosporidiosis. Trends Parasitol. 2008, 24 (4): 184-189. 10.1016/j.pt.2008.01.002. Robertson LJ, Gjerde BK: Cryptosporidium oocysts: challenging adversaries?. Trends Parasitol. 2007, 23 (8): 344-347. 10.1016/j.pt.2007.06.002. Jenkins MB, Eaglesham BS, Anthony LC, Kachlany SC, Bowman DD, Ghiorse WC: Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 2010, 76 (6): 1926-1934. 10.1128/AEM.02295-09. Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, Hadsall KZ, Abrahamsen MS: The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect Immun. 2004, 72 (2): 980-987. 10.1128/IAI.72.2.980-987.2004. Mead JR, Bonafonte MT, Arrowood MJ, Schinazi RF: In vitro expression of mRNA coding for a Cryptosporidium parvum oocyst wall protein. J Eukaryot Microbiol. 1996, 43 (5): 84S-85S. 10.1111/j.1550-7408.1996.tb05011.x. Tilley M, Upton SJ, Blagburn BL, Anderson BC: Identification of outer oocyst wall proteins of three Cryptosporidium (Apicomplexa: Cryptosporidiidae) species by 125I surface labeling. Infect Immun. 1990, 58 (1): 252-253. Rider SD, Zhu G: Cryptosporidium: genomic and biochemical features. Exp Parasitol. 2010, 124 (1): 2-9. 10.1016/j.exppara.2008.12.014. Thompson RC, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS: Cryptosporidium and cryptosporidiosis. Adv Parasitol. 2005, 59: 77-158. Hijnen WA, Beerendonk EF, Medema GJ: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res. 2006, 40 (1): 3-22. 10.1016/j.watres.2005.10.030. Rochelle PA, Upton SJ, Montelone BA, Woods K: The response of Cryptosporidium parvum to UV light. Trends Parasitol. 2005, 21 (2): 81-87. 10.1016/j.pt.2004.11.009. Bidard F, Imbeaud S, Reymond N, Lespinet O, Silar P, Clave C, Delacroix H, Berteaux-Lecellier V, Debuchy R: A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina. BMC Res Notes. 2010, 3: 171-10.1186/1756-0500-3-171. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, et al: Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004, 304 (5669): 441-445. 10.1126/science.1094786. Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS: The Cryptosporidium parvum transcriptome during in vitro development. PLoS One. 2012, 7 (3): e31715-10.1371/journal.pone.0031715. Madern D, Cai X, Abrahamsen MS, Zhu G: Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Mol Biol Evol. 2004, 21 (3): 489-497. Chatterjee A, Banerjee S, Steffen M, O'Connor RM, Ward HD, Robbins PW, Samuelson J: Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. Eukaryot Cell. 2010, 9 (1): 84-96. 10.1128/EC.00288-09. Borad A, Ward H: Human immune responses in cryptosporidiosis. Future Microbiol. 2010, 5 (3): 507-519. 10.2217/fmb.09.128. O'Connor RM, Burns PB, Ha-Ngoc T, Scarpato K, Khan W, Kang G, Ward H: Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro. Eukaryot Cell. 2009, 8 (4): 461-469. 10.1128/EC.00305-08. Putignani L, Possenti A, Cherchi S, Pozio E, Crisanti A, Spano F: The thrombospondin-related protein CpMIC1 (CpTSP8) belongs to the repertoire of micronemal proteins of Cryptosporidium parvum. Mol Biochem Parasitol. 2008, 157 (1): 98-101. 10.1016/j.molbiopara.2007.09.004. Deng M, Templeton TJ, London NR, Bauer C, Schroeder AA, Abrahamsen MS: Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect Immun. 2002, 70 (12): 6987-6995. 10.1128/IAI.70.12.6987-6995.2002. Fritz HM, Buchholz KR, Chen X, Durbin-Johnson B, Rocke DM, Conrad PA, Boothroyd JC: Transcriptomic analysis of Toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One. 2012, 7 (2): e29998-10.1371/journal.pone.0029998. Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003, 100 (16): 9440-9445. 10.1073/pnas.1530509100. Kloetzel JA, Baroin-Tourancheau A, Miceli C, Barchetta S, Farmar J, Banerjee D, Fleury-Aubusson A: Plateins: a novel family of signal peptide-containing articulins in euplotid ciliates. J Eukaryot Microbiol. 2003, 50 (1): 19-33. 10.1111/j.1550-7408.2003.tb00102.x. Huttenlauch I, Peck RK, Stick R: Articulins and epiplasmins: two distinct classes of cytoskeletal proteins of the membrane skeleton in protists. J Cell Sci. 1998, 111 (Pt 22): 3367-3378. Bajszar G, Dekonenko A: Stress-induced Hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants. Appl Environ Microbiol. 2010, 76 (6): 1732-1739. 10.1128/AEM.02353-09. Brackley KI, Grantham J: Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones. 2009, 14 (1): 23-31. 10.1007/s12192-008-0057-x. Lundin VF, Leroux MR, Stirling PC: Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci. 2010, 35 (5): 288-297. 10.1016/j.tibs.2009.12.007. Rider SD, Zhu G: Differential expression of the two distinct replication protein A subunits from Cryptosporidium parvum. J Cell Biochem. 2008, 104 (6): 2207-2216. 10.1002/jcb.21784. Malone JH, Oliver B: Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011, 9: 34-10.1186/1741-7007-9-34. Bahl A, Davis PH, Behnke M, Dzierszinski F, Jagalur M, Chen F, Shanmugam D, White MW, Kulp D, Roos DS: A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics. 2010, 11: 603-10.1186/1471-2164-11-603. Cai X, Woods KM, Upton SJ, Zhu G: Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro. Antimicrob Agents Chemother. 2005, 49 (11): 4437-4442. 10.1128/AAC.49.11.4437-4442.2005. Zhang H, Guo F, Zhu G: Involvement of Host Cell Integrin alpha2 in Cryptosporidium parvum Infection. Infect Immun. 2012, 80 (5): 1753-1758. 10.1128/IAI.05862-11. Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H, Zhou H: Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS One. 2010, 5 (7): e11827-10.1371/journal.pone.0011827. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, 30 (4): e15-10.1093/nar/30.4.e15. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res. 2007, 35 (Database issue): D760-765. Yu Y, Zhang H, Zhu G: Plant-type trehalose synthetic pathway in Cryptosporidium and some other apicomplexans. PLoS One. 2010, 5 (9): e12593-10.1371/journal.pone.0012593. Fritzler JM, Millership JJ, Zhu G: Cryptosporidium parvum long-chain fatty acid elongase. Eukaryot Cell. 2007, 6 (11): 2018-2028. 10.1128/EC.00210-07.