Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome
Tóm tắt
Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R2 = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.
Tài liệu tham khảo
Swingle WT, Webber HJ. The principal disease of citrus fruits in Florida. USDA Div Veg Physiol Pathol Bull. 1896;8:9–14.
Albrigo LG, Young RH. Phloem zinc accumulation in citrus trees affected with blight. HortSci. 1981;16(2):158–60.
Cohen M, Pelosi RR, Brlansky RH. Nature and location of xylem blockage structures in trees with citrus blight. Phytopathology. 1983;73(5):1125–30.
Derrick KS, Lee RF, Brlansky RH, Timmer LW, Hewitt BG, Barthe GA. Proteins associated with citrus blight. Plant Dis. 1990;74(2):168–70.
Derrick KS, Timmer LW. Citrus blight and other diseases of recalcitrant etiology. Annu Rev Phytopathol. 2000;38:181–205.
Lee RF, Marais LJ, Timmer LW, Graham JH. Syringe injection of water into the trunk-a rapid diagnostic test for citrus blight. Plant Dis. 1984;68(6):511–3.
Derrick KS, Barthe GA, Hewitt BG, Lee RF, Albrigo LG. Detection of citrus blight by serological assays. Proc Fla State Hort Soc. 1992;105:26–8.
Hopkins DL. Production of diagnostic symptoms of blight inoculated with Xylella fastidiosa. Plant Dis. 1988;72(5):432–5.
Graham JH, Timmer LW, Young RH. Necrosis of major roots in relation to citrus blight. Plant Dis. 1983;67(11):1273–6.
Graham JH, Brlansky RH, Timmer LW, Lee RF, Marais LJ, Bender GS. Comparison of citrus tree declines with necrosis of major roots and their association with Fusarium solani. Plant Dis. 1985;69(12):1055–8.
Derrick KS, Beretta MJ, Barthe GA, Florida State Horticultural S. Detection of an Idaeovirus in citrus with implications as to the cause of citrus blight. Proc Fla Hort Soc. 2006;119:69–72.
Wutscher HK, Hardesty CA. Ammonium, nitrite, and nitrate nitrogen levels in the soil under blight‐affected and healthy citrus trees. Commun Soil Sci Plant Anal. 1979;10(12):1495–503.
Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–7.
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic Acid: emergence of a core Signaling network. Annu Revf Plant Biol. 2010;61:651–79.
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. Plant Sci. 2013;207:79–87.
Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol. 2011;49:317–43.
Carlos EF. Transcriptional profiling on trees affected by citrus blight and identification of an etiological contrast potentially associated with the disease. PhD thesis. Gainesville: University of Florida; 2004.
Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45(1):59–66.
Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol. 2014;32(7):656–62.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Putnam A, Gaskalla R, Dixon WMK. Annual Report, Florida citrus budwood protection program. Winter Haven, FL: Bureau of Citrus Budwood Registration; 2012.
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78.
Hutchison D. Swingle citrumelo--a promising rootstock hybrid. Proc Fla State Hort Soc. 1974;87:89–91.
Seker M, Tuzcu O, Ollitrault P. Comparison of nuclear DNA content of citrus rootstock populations by flow cytometry analysis. Plant Breed. 2003;122(2):169–72.
Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004;45(11):1694–703.
Qiu J-L, Zhou L, Yun B-W, Nielsen HB, Fiil BK, Petersen K, MacKinlay J, Loake GJ, Mundy J, Morris PC. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol. 2008;148(1):212–22.
Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman M-A, Shokat KM, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 2006;47(4):532–46.
Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell. 2000;103(7):1111–20.
Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 2012;486(7402):228–32.
Lee TH, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics. 2014;15:162.
Lindbeck AGC, Brlansky RH. Cytology of fibrous roots from citrus blight-affected trees. Plant Dis. 2000;84(2):164–7.
Cuellar-Ortiz SM, De la Paz A-MM, Acosta-Gallegos J, Covarrubias AA. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 2008;31(10):1399–409.
Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, et al. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics. 2008;9:553.
Wilkins O, Braeutigam K, Campbell MM. Time of day shapes Arabidopsis drought transcriptomes. Plant J. 2010;63(5):715–27.
Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A. 2000;97(23):12908–13.
Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol. 2004;134(4):1697–707.
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 2005;17(12):3470–88.
Choi HI, Hong JH, Ha JO, Kang JY, Kim SY. ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000;275(3):1723–30.
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011;124(4):509–25.
Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A. 2007;104(47):18842–7.
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27.
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521.
Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003;15(1):165–78.
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005;139(2):949–59.
Ohmetakagi M, Shinshi H. Ethylene-inducible DNA-binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7(2):173–82.
Cao H, Glazebrook J, Clarke JD, Volko S, Dong XN. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997;88(1):57–63.
Ndamukong I, Al Abdallat A, Thurow C, Fode B, Zander M, Weigel R, Gatz C. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 2007;50(1):128–39.
Blumke A, Somerville SC, Voigt CA. Transient expression of the Arabidopsis thaliana callose synthase PMR4 increases penetration resistance to powdery mildew in barley. Adv Biosci Biotechnol. 2013;4(8):810–3.
Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA. Elevated early callose deposition results in complete penetration resistance to Powdery mildew in Arabidopsis. Plant Physiol. 2013;161(3):1433–44.
Dong X, Hong Z, Chatterjee J, Kim S, Verma DPS. Expression of callose synthase genes and its connection with NPR1 signaling pathway during pathogen infection. Planta. 2008;229(1):87–98.
Atkinson N, Urwin P. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523–43.
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genornes. Bioinformatics. 2007;23(9):1061–7.
Walenz B, Florea L. Sim4db and Leaff: utilities for fast batch spliced alignment and sequence indexing. Bioinformatics. 2011;27(13):1869–70.
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491.
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M Usadel B. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014;37(5):1250–8.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–39.
Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One. 2012;7(2):e31263.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods. 2001;25(4):402–8.
Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5.
