Phân tích transcriptome của các gen và con đường liên quan đến chuyển hóa trong Scylla paramamosain dưới các cường độ ánh sáng khác nhau trong mùa đông ở trong nhà

Na Li1, Junming Zhou1, Huan Wang1, Ce Shi1, Lei Liu1
1School of Marine Science, Ningbo University, Ningbo, China

Tóm tắt

Tóm tắt Đặt vấn đề Scylla paramamosain là một trong những loài giáp xác biển quan trọng về mặt thương mại thuộc chi Scylla, được phân bố rộng rãi dọc theo bờ biển Trung Quốc, Việt Nam và Nhật Bản. Dữ liệu về gen và transcriptome của cua bùn còn ít. Cường độ ánh sáng là một trong những yếu tố sinh thái ảnh hưởng đến S. paramamosain trong quá trình đông lạnh trong nhà. Để hiểu cơ chế chuyển hóa năng lượng thích ứng với cường độ ánh sáng, chúng tôi đã phân tích transcriptome của gan tụy S. paramamosain dưới các cường độ ánh sáng khác nhau (0, 1.43, 40.31 μmol·m−2·s−1). Kết quả Tổng cộng 5052 gen biểu hiện khác biệt đã được xác định ở nhóm ánh sáng thấp (nhóm LL, 3104 gen được điều chỉnh tăng và 1948 gen được điều chỉnh giảm). Tổng cộng 7403 gen biểu hiện khác biệt đã được xác định ở nhóm ánh sáng cao (nhóm HL, 5262 gen được điều chỉnh tăng và 2141 gen được điều chỉnh giảm). S. paramamosain thích ứng với các môi trường có cường độ ánh sáng khác nhau thông qua việc điều chỉnh các axit amin, axit béo, chuyển hóa carbon và năng lượng. Các cường độ ánh sáng khác nhau có tác động mạnh đến việc tạo ra năng lượng của S. paramamosain bằng cách ảnh hưởng đến tỷ lệ tiêu thụ oxy, hô hấp hiếu khí, con đường đường phân/gluconeogenesis, chu trình citrate (chu trình TCA) và phân hủy axit béo. Kết luận Cường độ ánh sáng yếu có lợi hơn cho sự sống sót của S. paramamosain, mà cần sản xuất và tiêu thụ năng lượng tương đối ít hơn để duy trì các hoạt động sinh lý. Ngược lại, S. paramamosain sản xuất nhiều năng lượng hơn để thích ứng với áp lực của các cường độ ánh sáng cao. Những phát hiện của nghiên cứu góp phần mở rộng hiểu biết về các cơ chế điều chỉnh liên quan đến chuyển hóa của S. paramamosain dưới các cường độ ánh sáng khác nhau.

Từ khóa


Tài liệu tham khảo

Fasola M, Biddau CL. Foraging habits of crab plovers dromas ardeola overwintering on the Kenya coast. Colon Waterbirds. 1996;19:207–13.

Zhen JT, Shao YF. Experimental study on thermal environment in over-wintering greenhouse for Scylla serrate. J Zhejiang Ocean Univ. 2001;20:205–8.

Peirson SN, Halford S, Foster RG. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc. 2009;364:2849–65.

Valdimarsson SK, Metcalfe NB. Is the level of aggression and dispersion in territorial fish dependent on light intensity? Anim Behav. 2001;61(6):1143–9.

Kestemont P, Jourdan S, Houbart M, Me’lard C, Paspatis M, Fontaine P, Cuvier A, Kentouri M, Baras E. Size heterogeneity, cannibalism and competition in cultured predatory fish larvae: biotic and abiotic influences. Aquaculture. 2003;227:333–56.

Puvanendran V, Brown JA. Effect of light intensity on the foraging and growth of Atlantic cod larvae: inter population difference? Mar Ecol Prog Se. 2000;167:207–14.

Trippel EA, Neil SRE. Effects of photoperiod and light intensity on growth and activity of juvenile haddock (Melanogrammus aeglefinus). Aquaculture. 2003;217:633–45.

Han D, Xie S, Lei W, Lei W, Zhu XM, Yang YX. Effect of light intensity on growth, survival and skin color of juvenile Chinese longsnout catfish (Leiocassis longirostris Gunther). Aquaculture. 2005;248:299–306.

Booth MA, Warner-Smith RJ, Allan GL, Glencross BD. Effects of dietary astaxanthin source and light manipulation on the skin color of Australian snapper Pagrus auratus (bloch & schneider, 1801). Aquac Res. 2015;35(5):458–64.

Tian HY, Zhang DD, Xu C, Wang F, Liu WB. Effects of light intensity on growth, immune responses, antioxidant capability and disease resistance of juvenile blunt snout bream Megalobrama amblycephala. Fish Shellfish Immunol. 2015;47(2):674–80.

Wang T, Cheng Y, Liu Z, Yan S, Long X. Effects of light intensity on growth, immune response, plasma cortisol and fatty acid composition of juvenile Epinephelus coioides reared in artificial seawater. Aquaculture. 2013;414-415(2):135–9.

Honryo T, Kurata M, Okada T, Ishibashi Y. Effects of night-time light intensity on the survival rate and stress responses in juvenile Pacific bluefin tuna Thunnus orientalis (Temminck and Schlegel). Aquac Res. 2013;44(7):1058–65.

Nalbach HO, Nalbach G, Forzin L. Visual control of eye-stalk orientation in crabs: vertical optokinetics, visual fixation of the horizon, and eye design. J Comp Physiol A. 1989;165(5):577–87.

Bai AS. Photic effects on embryonation and phototactic responses by the larvae of Argulus siamensis. Proc Anim Sci. 1981;90(5):513–7.

Gao XL, Zhang M, Li X, Shi C, Song CB, Liu Y. Effects of led light quality on the growth, metabolism, and energy budgets of Haliotis discus. Aquaculture. 2016;453:31–9.

Wang H, Tang L, Wei H, Mu CK, Wang CL. “Butter crab”: an environment-induced phenotypic variation of Scylla paramamosain with special nutrition and flavor. Aquac Res. 2019;50(2):541–9.

Zhou JM, Li N, Wang H, Wang CL, Mu CK, Shi C, Liu L, Li RH, Ye YF, Song WW. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering. Aquac Res. 2020;51:1834–43.

Fishery Bureau, Ministry of Agriculture, China. China fisheries statistical yearbook 2018. Beijing: Chinese Agriculture Express; 2019.

Ma HY, Li SJ, Feng NN, Ma CY, Wang W, Chen W, Ma LB. First genetic linkage map for the mud crab (Scylla paramamosain) constructed using microsatellite and AFLP markers. Genet Mol Res. 2016;15(2):gmr.15026929.

Shi X, Waiho K, Li XC, Ikhwanuddin M, Miao GD, Lin F, Zhang Y, Li SK, Zheng HP, Liu WH, Aweya JJ, Azmie G, Baylon J, Quinitio ET, Ma HY. Female-specific SNP markers provide insights into a WZ/ZZ sex determination system for mud crab Scylla paramamosain, S tranquebarica and S. serrata with a rapid method for genetic sex identification. BMC Genomics. 2018;19:981.

Wang H, Tang L, Wei H, Lu JK, Mu CK, Wang CL. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drops in the mud crab, Scylla paramamosain. BMC Genomics. 2018;19:421.

Shi X, Lu JX, Wu QY, Khor W, Jude JA, Hanafiah F, Zhang YL, Li SK, Zheng HP, Lin F, You CH, Mhd I, Ma HY. Comparative analysis of growth performance between female and male mud crab Scylla paramamosain crablets: evidences from a four-month successive growth experiment. Aquaculture. 2019;505:351–62.

Farlora R, Araya-Garay J, Gallardo-Escárate C. Discovery of sex-related genes through high-throughput transcriptome sequencing from the salmon louse Caligus rogercresseyi. Mar Genomics. 2014;15(6):85–93.

Ding J, Liu C, Luo SY, Zhang Y, Zhu J. Transcriptome and physiology analysis identify key metabolic changes in the liver of the large yellow croaker (Larimichthys crocea) in response to acute hypoxia. Ecotoxicol Environ Saf. 2019;189:109957.

Wang YC, Wang BJ, Liu M, Jiang KJ, Wang MQ, Wang L. Comparative transcriptome analysis reveals the potential influencing mechanism of dietary astaxanthin on growth and metabolism in Litopenaeus vannamei. Aquaculture Rep. 2020;16:100259.

Zou J, Chen J, Tang N, Gao YQ, Hong MS, Wei W, Cao HH, Jian W, Li N, Deng W, Li ZG. Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-mcp treatment. Postharvest Biol Technol. 2018;135:57–67.

Unwin MJ, Poortenaar CW, Rowe DK, Boustead NC, Porter MJR. Seasonal profiles in growth, energy reserves, gonad development, and plasma steroids in age 1+ cultured Chinook salmon (Oncorhynchus tshawytscha) females. N Z J Mar Freshwater Res. 2004;38(1):29–41.

Xie SW, Tian LX, Li YM, Zhou W, Zeng SL, Yang HJ, Liu YJ. Effect of proline supplementation on anti-oxidative capacity, immune response and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2015;448:105–11.

Xuan RJ, Wu H, Lin CD, Ma DD, Li YJ, Xu TA, Wang L. Oxygen consumption and metabolic responses of freshwater crab Sinopotamon henanense to acute and sub-chronic cadmium exposure. Ecotoxicol Environ Saf. 2013;89:29–35.

Horst M, Azem A, Schatz G, Glick BS. What is the driving force for protein import into mitochondria? Biochim Biophys Acta. 1997;1318(1–2):71–8.

Gonzalvez F, Pariselli F, Dupaigne P, Budihardjo I, Lutter M, Antonsson B, et al. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates bax and bak. Cell Death Differ. 2005;12(6):614–26.

Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–69.

Castanoncervantes O, BosquesTistler T, FernandezRiveraRio L, Fanjul ML, Prieto J. Effect of variation in photoperiod and light intensity on oxygen consumption, lactate concentration and behavior in crayfish Procambarus clarkii and Procambarus digueti. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(1):263.

Armitage KB, Wall TJ. The effects of body size, starvation and temperature acclimation on oxygen consumption of the crayfish Orconectes nais. Comp Biochem Physiol Part A Physiol. 1982;73(1):63–8.

Withyachumnarnkul B, Poolsanguan B, Poolsanguan W. Continuous darkness stimulates body growth of the juvenile giant freshwater prawn, Macrobrachiumrosenbergiide Man. Chronobiol Int. 1990;7(2):93–7.

Villarreal H, Hinojosa, p., Naranjo, J. Effect of temperature and salinity on the oxygen consumption of laboratory produced Penaeus vannamei postlarvae. Comp Biochem Physiol Part A Physiol. 1994;108(2–3):331–6.

Kennedy H, Haack T, Hartill V, Matakovi L, Baumgartner ER, Potter H, et al. Sudden cardiac death due to deficiency of the mitochondrial inorganic pyrophosphatase PPA2. Am J Hum Genet. 2016;99(3):675–82.

Georgakoudi I, Quinn KP. Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng. 2012;14(1):351–67.

Nantapong N, Otofuji A, Miguit CT, Adachi O, Toyama H, Matsushita K. Electron transfer ability from NADH to Menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum. Biosci Biotechnol Biochem. 2005;69(1):149–59.

Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572–87.

Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.

Jeong Hae C, Jung PM, Kook Whan K, Yoon Ha C, Hee PS, Won Gun A, Ung Suk Y, Jaehun C. Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. FEBS Lett. 2005;579:2795–801.

Cota-Ruiz K, Peregrino-Uriarte AB, Felix-Portillo M, Martínez-Quintana JA, Yepiz-Plascencia G. Expression of fructose 1, 6-bisphosphatase and phosphofructokinase is induced in hepatopancreas of the white shrimp Litopenaeus vannamei by hypoxia. Mar Environ Res. 2015;106:1–9.

Wierenga RK, Kapetaniou EG, Venkatesan R. Triosephosphate isomerase: a highly evolved biocatalyst. Cell Mol Life Sci. 2010;67:3961–82.

Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms. Mol Biol Evol. 2012;29:367–79.

Blencke HM, Reif I, Commichau FM, Detsch C. Jrg Stülke. Regulation of citB expression in bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Arch Microbiol. 2006;185(2):136–46.

Linn TC, Pettit FH, Hucho F, Reed LJ. Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria. Proc Natl Acad Sci U S A. 1969;64:227–34.

Ngo PTH, Kim JK, Kim H, Jung J, Ahn YJ, Kim JG, Lee BM, Kang HW, Kang LW. Expression, crystallization and preliminary x-ray crystallographic analysis of XometC, a cystathionine γ-lyase-like protein from Xanthomonas oryzae pv. Oryzae. Acta Crystallogr. 2008;64:750–8.

Wheatley AM, McLoughlin JV. The effect of haloperidol, spiperone and dantrolene on the concentrations of creatine phosphate, ATP and lactate in brain and skeletal muscle of the rat during halothane anesthesia. Res Commun Chem Pathol Pharmacol. 1991;73(3):259–68.

Jean-Michel W. Metabolic fuels: regulating fluxes to select mix. J Exp Biol. 2011;214:286–94.

Warude D, Joshi K, Harsulkar A. Polyunsaturated fatty acids: biotechnology. Crit Rev Biotechnol. 2006;26:83–93.

Khadake R, Khonde V, Mhaske V, Ranjekar P, Harsulkar A. Functional and bioinformatic characterisation of sequence variants of Fad3 gene from flax. J Sci Food Agric. 2011;91:2689–96.

Huang LM, Lai CP, Chen LF, Chan MT, Shaw JF. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Bot Stud. 2015;56:33.

Yang JL, Li LD, Huang K, Li ZG, Wang Q, Wang XF, Yang HL, Chen PJ. Analysis and evaluation on nutrients in whole viscera of Ruditapes philippinarum. Chin Fishery Qual Stand. 2014;4(2):26–31.