Nghiên cứu phân tích biểu đạt gen về năng suất ε-poly-l-lysine được nâng cao trong môi trường nuôi cấy sử dụng glucose và glycerol làm nguồn carbon hỗn hợp

Bioprocess and Biosystems Engineering - Tập 42 - Trang 555-566 - 2019
Xin Zeng1,2, Wenyun Miao3, Beibei Wen4, Zhonggui Mao2, Mingzhi Zhu4, Xusheng Chen2
1College of Life Sciences, Huaibei Normal University, Huaibei, China
2The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
3Family Planning Service Center, Rizhao Maternal and Child Care Service Hospital, Rizhao, China
4Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China

Tóm tắt

Nguồn carbon hỗn hợp (MCS) từ glucose và glycerol có thể giảm đáng kể thời gian lên men theo lô và cải thiện năng suất ε-poly-l-lysine (ε-PL), điều này có ý nghĩa lớn trong lên men vi sinh vật công nghiệp. Nghiên cứu này nhằm tiết lộ cơ chế sinh lý thông qua phân tích hệ gen. Trong MCS, sự gia tăng biểu đạt gen chủ yếu xuất hiện trong quá trình chuyển hóa carbon trung tâm, tổng hợp l-lysine cũng như hô hấp tế bào, và những kết quả này đã được chứng minh bằng phân tích PCR định lượng theo thời gian thực. Sự xác định l-lysine trong tế bào và phân tích khí thải đã xác nhận thêm rằng có một lượng lớn l-lysine dự trữ và hô hấp tế bào hoạt động trong MCS. Thú vị là, trong MCS, pls được điều chỉnh tăng lên đáng kể hơn so với trong những nguồn carbon đơn mà không có sự cải thiện trong biểu đạt gen của HrdD, điều này cho thấy rằng năng suất ε-PL được cải thiện không chỉ được hỗ trợ bởi hrdD mà còn bởi các yếu tố điều hòa khác. Nghiên cứu này đã phơi bày cơ sở sinh lý cho năng suất ε-PL được cải thiện trong MCS, từ đó cung cấp những tham khảo cho các nghiên cứu về sản xuất các hóa chất sinh học khác sử dụng nhiều loại cơ chất.

Từ khóa


Tài liệu tham khảo

Shukla SC, Singh A, Pandey AK, Mishra A (2012) Review on production and medical applications of ɛ-polylysine. Biochem Eng J 65:70–81 Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimurad S, Yanagimoto Y, Barnett JW Jr (2003) Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regul Toxicol Pharmacol 37:328–340 Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(epsilon-lysine) and its various applications. Bioresour Technol 97:1148–1159 Li S, Tang L, Chen XS, Liao LJ, Li F, Mao ZG (2011) Isolation and characterization of a novel epsilon-poly-l-lysine producing strain: Streptomyces griseofuscus. J Ind Microbiol Biotechnol 38:557–563 Bankar SB, Singhal RS (2010) Optimization of poly-epsilon-lysine production by Streptomyces noursei NRRL 5126. Bioresour Technol 101:8370–8375 Jia S, Wang G, Sun Y, Tan Z (2009) Improvement of ε-poly-l-lysine production by Streptomyces albulus TUST2 employing a feeding strategy, in 3rd International Conference on Bioinformatics and Biomedical Engineering, Tianjin University of Science and Technology, Tianjin, China, Beijing. https://doi.org/10.1109/ICBBE.2009.5162940 Xia J, Xu Z, Xu H, Feng X, Bo F (2014) The regulatory effect of citric acid on the co-production of poly (ε-lysine) and poly (l-diaminopropionic acid) in Streptomyces albulus PD-1. Bioprocess Biosyst Eng 37:2095–2103 Xu Z, Bo F, Xia J, Sun Z, Li S, Feng X, Xu H (2015) Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochem Eng J 94:58–64 Liu S, Wu Q, Zhang J, Mo S (2011) Production of epsilon-poly-l-lysine by Streptomyces sp. using resin-based, in situ product removal. Biotechnol Lett 33:1581–1585 Zhang Y, Feng X, Xu H, Yao Z, Ouyang P (2010) Epsilon-poly-l-lysine production by immobilized cells of Kitasatospora sp. MY 5–36 in repeated fed-batch cultures. Bioresour Technol 101:5523–5527 Shih IL, Shen MH (2006) Optimization of cell growth and poly(ɛ-lysine) production in batch and fed-batch cultures by Streptomyces albulus IFO14147. Process Biochem 41:1644–1649 Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosic Bioeng 91:190–194 Chen XS, Tang L, Li S, Liao LJ, Zhang JH, Mao ZG (2011) Optimization of medium for enhancement of epsilon-poly-l-lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source. Bioresour Technol 102:1727–1732 Chen XS, Mao ZG (2013) Comparison of glucose and glycerol as carbon sources for epsilon-poly-l-lysine production by Streptomyces sp. M-Z18. Appl Biochem Biotechnol 170:185–197 Chen XS, Ren XD, Dong N, Li S, Li F, Zhao FL, Tang L, Zhang JH, Mao ZG (2012) Culture medium containing glucose and glycerol as a mixed carbon source improves ε-poly-l-lysine production by Streptomyces sp. M-Z18. Bioprocess Biosyst Eng 35:469–475 Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK (2011) Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 90:489–497 Liu Y, Zhang YG, Zhang RB, Zhang F, Zhu J (2011) Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici. Curr Microbiol 62:152–158 Peacock L, Ward J, Ratledge C, Dickinson F, Ison A (2003) How Streptomyces lividans uses oils and sugars as mixed substrates? Enzyme Microb Technol 1:157–166 Liao G, Liu Q, Xie J (2013) Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus. Microb Cell Fact 12:1–7 Redon E, Loubiere P, Cocaign-Bousquet M (2005) Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation. J Bacteriol 187:3589–3592 Sakurai K, Arai H, Ishii M, Igarashi Y (2011) Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology-GSM 157:899–910 Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086 Nishikawa M, Ogawa K (2002) Distribution of microbes producing antimicrobial ε-poly-l-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68:3575–3581 Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A 826:109–134 Ren XD, Chen XS, Tang L, Zeng X, Wang L, Mao ZG (2015) Physiological mechanism of the overproduction of ε-poly-l-lysine by acidic pH shock in fed-batch fermentation. Bioprocess Biosyst Eng 38:2085–2094 Zeng X, Chen XS, Ren XD, Liu QR, Wang L, Sun QX, Tang L, Mao ZG (2014) Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-l-lysine productivity. Appl Biochem Biotechnol 173:2211–2224 Yamanaka K, Maruyama C, Takagi H, Hamano Y (2008) Epsilon-poly-l-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat Chem Biol 4:766–772 Wang L, Gao C, Tang N, Hu S, Wu Q (2015) Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing. Sci Rep UK 5:9201 Hamano Y, Yoshida T, Kito M, Nakamori S, Nagasawa T, Takagi H (2006) Biological function of the pld gene product that degrades epsilon-poly-l-lysine in Streptomyces albulus. Appl Microbiol Biotechnol 72:173–181 Yamanaka K, Kito N, Imokawa Y, Maruyama C, Utagawa T, Hamano Y (2010) Mechanism of epsilon-poly-l-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-l-lysine-degrading enzyme. Appl Environ Microbiol 76:5669–5675 Zhang JH, Zeng X, Chen XS, Mao ZG (2018) Metabolic analyses of the improved ε-poly-l-lysine productivity using a glucose–glycerol mixed carbon source in chemostat cultures. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-018-1943-y Rao YM, Sureshkumar GK (2001) Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism. Biotechnol Bioeng 72:62–68 Wei ZH, Bai LQ, Deng ZX, Zhong JJ (2011) Enhanced production of validamycin A by H2O2-induced reactive oxygen species in fermentation of Streptomyces hygroscopicus 5008. Bioresour Technol 102:1783–1787 Zeng X, Chen XS, Gao Y, Ren XD, Wang L, Mao ZG (2015) Continuously high reactive oxygen species generation decreased the specific ε-poly-L-lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source. Process Biochem 50:1993–2003