Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells

BMC Developmental Biology - Tập 6 Số 1 - 2006
Makoto Imamura1, Kyoko Miura1, Kumiko A. Iwabuchi1, Tomoko Ichisaka1, Masato Nakagawa1, Jiyoung Lee2, Mito Kanatsu-Shinohara2, Takashi Shinohara2, Shinya Yamanaka3,1
1Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
2Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
3CREST, Japan Science and Technology Agency, Saitama, Japan

Tóm tắt

AbstractBackgroundWe previously identified a set of genes called ECATs (ES cell-associated transcripts) that are expressed at high levels in mouse ES cells. Here, we examine the expression and DNA methylation of ECATs in somatic cells and germ cells.ResultsIn all ECATs examined, the promoter region had low methylation levels in ES cells, but higher levels in somatic cells. In contrast, in spite of their lack of pluripotency, male germline stem (GS) cells expressed most ECATs and exhibited hypomethylation of ECAT promoter regions. We observed a similar hypomethylation of ECAT loci in adult testis and isolated sperm. Some ECATs were even less methylated in male germ cells than in ES cells. However, a few ECATs were not expressed in GS cells, and most of them targets of Oct3/4 and Sox2. The Octamer/Sox regulatory elements were hypermethylated in these genes. In addition, we found that GS cells express little Sox2 protein and low Oct3/4 protein despite abundant expression of their transcripts.ConclusionOur results suggest that DNA hypermethylation and transcriptional repression of a small set of ECATs, together with post-transcriptional repression of Oct3/4 and Sox2, contribute to the loss of pluripotency in male germ cells.

Từ khóa


Tài liệu tham khảo

Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981, 292: 154-6. 10.1038/292154a0.

Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981, 78: 7634-8. 10.1073/pnas.78.12.7634.

Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998, 95: 379-91. 10.1016/S0092-8674(00)81769-9.

Niwa H, Miyazaki J, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000, 24: 372-6. 10.1038/74199.

Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003, 17: 126-40. 10.1101/gad.224503.

Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S: The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell. 2003, 113: 631-42. 10.1016/S0092-8674(03)00393-3.

Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A: Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003, 113: 643-55. 10.1016/S0092-8674(03)00392-1.

Takahashi K, Mitsui K, Yamanaka S: Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature. 2003, 423: 541-5. 10.1038/nature01646.

Yuan H, Corbi N, Basilico C, Dailey L: Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995, 9: 2635-45.

Ben-Shushan E, Thompson JR, Gudas LJ, Bergman Y: Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol. 1998, 18: 1866-78.

Nishimoto M, Fukushima A, Okuda A, Muramatsu M: The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol. 1999, 19: 5453-65.

Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S: Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol. 2003, 23: 2699-708. 10.1128/MCB.23.8.2699-2708.2003.

Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T: Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol. 2005, 25: 2475-85. 10.1128/MCB.25.6.2475-2485.2005.

Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P: Transcriptional Regulation of Nanog by OCT4 and SOX2. J Biol Chem. 2005, 280: 24731-7. 10.1074/jbc.M502573200.

Wu da Y, Yao Z: Isolation and characterization of the murine Nanog gene promoter. Cell Res. 2005, 15: 317-24. 10.1038/sj.cr.7290300.

Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F: Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem. 2005, 280: 5307-17. 10.1074/jbc.M410015200.

Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H, Muramatsu M, Okuda A: Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res. 2002, 30: 3202-13. 10.1093/nar/gkf435.

Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, Cavallaro M, Favaro R, Ottolenghi S, Reinbold R, et al: Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem. 2004, 279: 41846-57. 10.1074/jbc.M405514200.

Hattori N, Nishino K, Ko YG, Ohgane J, Tanaka S, Shiota K: Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem. 2004, 279 (17): 17063-9. 10.1074/jbc.M309002200.

Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol. 2004, 24: 8862-71. 10.1128/MCB.24.20.8862-8871.2004.

Carlone DL, Lee JH, Young SR, Dobrota E, Butler JS, Ruiz J, Skalnik DG: Reduced genomic Cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol Cell Biol. 2005, 25: 4881-91. 10.1128/MCB.25.12.4881-4891.2005.

Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T: Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003, 69: 612-6. 10.1095/biolreprod.103.017012.

Fujiwara Y, Komiya T, Kawabata H, Sato M, H Fujimoto, Furusawa M, Noce T: Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci U S A. 1994, 91: 12258-62. 10.1073/pnas.91.25.12258.

Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, et al: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006, 38: 431-40. 10.1038/ng1760.

Meistrich ML, Mohapatra B, Shirley CR, Zhao M: Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003, 111: 483-8.

Matsui Y, Zsebo K, Hogan BL: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992, 70: 841-7. 10.1016/0092-8674(92)90317-6.

Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, et al: Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004, 119: 1001-12. 10.1016/j.cell.2004.11.011.

Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T: Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005, 5: 639-646. 10.1016/j.modgep.2005.03.001.

Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E: Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology. 2005, 47: 48-56. 10.1111/j.1365-2559.2005.02182.x.

Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LH, Pauchnik M, Chow CW, Robb L: The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer. 2005, 104: 2092-8. 10.1002/cncr.21435.

Li E: Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002, 3: 662-73. 10.1038/nrg887.

Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ: Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene. 2002, 21: 1048-61. 10.1038/sj.onc.1205153.

Ushijima T, Watanabe N, Shimizu K, Miyamoto K, Sugimura T, Kaneda A: Decreased fidelity in replicating CpG methylation patterns in cancer cells. Cancer Res. 2005, 65: 11-7.

Cai S, Han HJ, Kohwi-Shigematsu T: Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003, 34: 42-51. 10.1038/ng1146.

Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet. 2005, 37: 31-40. 10.1038/ng1570.

Takahashi K, Nakagawa M, Young SG, Yamanaka S: Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem. 2005, 280: 32768-74. 10.1074/jbc.M506280200.

Maruyama M, Ichisaka T, Nakagawa M, Yamanaka S: Differential roles for sox15 and sox2 in transcriptional control in mouse embryonic stemcells. J Biol Chem. 2005, 280: 24371-9. 10.1074/jbc.M501423200.