Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kích thích dòng điện trực tiếp xuyên sọ nâng cao lý thuyết trí tuệ ở bệnh nhân Parkinson có suy giảm nhận thức nhẹ: một nghiên cứu ngẫu nhiên, mù đôi, đối chứng giả dược
Tóm tắt
Bệnh Parkinson (PD) kèm theo suy giảm nhận thức nhẹ (MCI) (PD-MCI) đại diện cho một trong những biến chứng đáng lo ngại nhất cho bệnh nhân mắc PD và có liên quan đến nguy cơ phát triển sa sút trí tuệ cao hơn. Mặc dù kích thích dòng điện trực tiếp xuyên sọ (tDCS) đã được chứng minh là cải thiện các triệu chứng vận động và phi vận động ở bệnh nhân PD, đến nay chưa có nghiên cứu nào điều tra hiệu quả của tDCS đối với Lý thuyết trí tuệ (ToM), tức là khả năng hiểu biết và dự đoán hành vi của người khác, ở bệnh nhân PD-MCI. Trong nghiên cứu ngẫu nhiên, mù đôi và đối chứng giả dược này, chúng tôi đã áp dụng tDCS hoạt động trên vỏ não trán giữa (MFC) để điều chỉnh hiệu suất ToM ở hai mươi bệnh nhân PD-MCI. Hai mươi người khỏe mạnh đối chứng (HC) cũng được tham gia và được yêu cầu thực hiện nhiệm vụ ToM mà không nhận tDCS. Ở những bệnh nhân PD-MCI, i) hiệu suất ToM tồi tệ hơn so với HC, ii) khả năng ToM kém hơn ở những người có khó khăn trong thực hiện trước trán, và iii) tDCS trên MFC dẫn đến rút ngắn đáng kể độ trễ cho các nhiệm vụ ToM. Chúng tôi cho thấy lần đầu tiên rằng tDCS hoạt động trên MFC cải thiện ToM ở bệnh nhân PD-MCI, và gợi ý rằng kích thích não không xâm lấn có thể được sử dụng để cải thiện các thiếu hụt ToM quan sát thấy ở những bệnh nhân này.
Từ khóa
#Bệnh Parkinson #suy giảm nhận thức nhẹ #kích thích dòng điện trực tiếp xuyên sọ #lý thuyết trí tuệ #thiếu hụt ToMTài liệu tham khảo
Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci. 2003;26:81–104.
Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–74.
Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society task force guidelines. Mov Disord. 2012;27:349–56.
Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13:217–31.
Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.
Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373:2055–66.
Aarsland D, Kramberger MG. Neuropsychiatric symptoms in Parkinson’s disease. J Parkinsons Dis. 2015;5:659–67.
Dubois B, Pillon B. Cognitive deficits in Parkinson’s disease. J Neurol. 1997;244:2–8.
Goldman JG, Litvan I. Mild cognitive impairment in Parkinson’s disease. Minerva Med. 2011;102:441–59.
Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9:1200–13.
Padovani A, Costanzi C, Gilberti N, Borroni B. Parkinson’s disease and dementia. Neurol Sci. 2006;27(Suppl 1):S40–3.
Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson’s disease. Neurobiol Dis. 2012;46:590–6.
Gallagher DA, Lees AJ, Schrag A. What are the most important nonmotor symptoms in patients with Parkinson's disease and are we missing them? Mov Disord. 2010;25:2493–500.
Geurtsen GJ, Hoogland J, Goldman JG, Schmand BA, Troster AI, Burn DJ, et al. Parkinson’s disease mild cognitive impairment: application and validation of the criteria. J Parkinsons Dis. 2014;4:131–7.
Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707 quiz 837.
Enrici I, Adenzato M, Ardito RB, Mitkova A, Cavallo M, Zibetti M, et al. Emotion processing in Parkinson's disease: a three-level study on recognition, representation, and regulation. PLoS One. 2015;10:e0131470.
Biundo R, Fiorenzato E, Antonini A. Nonmotor symptoms and natural history of Parkinson's disease: evidence from cognitive dysfunction and role of noninvasive interventions. Int Rev Neurobiol. 2017;133:389–415.
Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. MDS task force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI. Mov Disord. 2011;26:1814–24.
Weintraub D, Troster AI, Marras C, Stebbins G. Initial cognitive changes in Parkinson’s disease. Mov Disord 2018;33(4):511-519.
Yarnall AJ, Breen DP, Duncan GW, Khoo TK, Coleman SY, Firbank MJ, et al. Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology. 2014;82:308–16.
Marras C, Armstrong MJ, Meaney CA, Fox S, Rothberg B, Reginold W, et al. Measuring mild cognitive impairment in patients with Parkinson’s disease. Mov Disord. 2013;28:626–33.
Goldman JG, Holden S, Bernard B, Ouyang B, Goetz CG, Stebbins GT. Defining optimal cutoff scores for cognitive impairment using Movement Disorder Society task force criteria for mild cognitive impairment in Parkinson’s disease. Mov Disord. 2013;28:1972–9.
Lawrence BJ, Gasson N, Loftus AM. Prevalence and subtypes of mild cognitive impairment in Parkinson’s disease. Sci Rep. 2016;6:33929.
Poletti M, Enrici I, Adenzato M. Cognitive and affective theory of mind in neurodegenerative diseases: neuropsychological, neuroanatomical and neurochemical levels. Neurosci Biobehav Rev. 2012;36:2147–64.
Bodden ME, Dodel R, Kalbe E. Theory of mind in Parkinson's disease and related basal ganglia disorders: a systematic review. Mov Disord. 2010;25:13–27.
Bodden ME, Mollenhauer B, Trenkwalder C, Cabanel N, Eggert KM, Unger MM, et al. Affective and cognitive theory of mind in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:466–70.
Roca M, Torralva T, Gleichgerrcht E, Chade A, Arévalo GG, Gershanik O, et al. Impairments in Social Cognition in Early Medicated and Unmedicated Parkinson Disease. Cog Behav Neurol. 2010;23:152–8.
Santangelo G, Vitale C, Trojano L, Errico D, Amboni M, Barbarulo AM, et al. Neuropsychological correlates of theory of mind in patients with early Parkinson’s disease. Mov Disord. 2012;27:98–105.
Tsuruya N, Kobayakawa M, Kawamura M. Is “reading mind in the eyes” impaired in Parkinson’s disease? Parkinsonism Relat Disord. 2011;17:246–8.
Carrington SJ, Bailey AJ. Are there theory of mind regions in the brain? A review of the neuroimaging literature. Hum Brain Mapp. 2009;30:2313–35.
Molenberghs P, Johnson H, Henry JD, Mattingley JB. Understanding the minds of others: a neuroimaging meta-analysis. Neurosci Biobehav Rev. 2016;65:276–91.
Van Overwalle F. Social cognition and the brain: a meta-analysis. Hum Brain Mapp. 2009;30:829–58.
Adenzato M, Cavallo M, Enrici I. Theory of mind ability in the behavioural variant of frontotemporal dementia: an analysis of the neural, cognitive, and social levels. Neuropsychologia. 2010;48:2–12.
Adenzato M, Poletti M. Theory of mind abilities in neurodegenerative diseases: an update and a call to introduce mentalizing tasks in standard neuropsychological assessments. Clin Neuropsychiatry. 2013;10.
Brioschi Guevara A, Knutson KM, Wassermann EM, Pulaski S, Grafman J, Krueger F. Theory of mind impairment in patients with behavioural variant fronto-temporal dementia (bv-FTD) increases caregiver burden. Age Ageing. 2015;44:891–5.
Gregory C, Lough S, Stone V, Erzinclioglu S, Martin L, Baron-Cohen S, et al. Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer’s disease: theoretical and practical implications. Brain. 2002;125:752–64.
Henry JD, Phillips LH, von Hippel C. A meta-analytic review of theory of mind difficulties in behavioural-variant frontotemporal dementia. Neuropsychologia. 2014;56:53–62.
Poletti M, Enrici I, Bonuccelli U, Adenzato M. Theory of mind in Parkinson’s disease. Behav Brain Res. 2011;219:342–50.
Yu RL, Wu RM. Social brain dysfunctions in patients with Parkinson’s disease: a review of theory of mind studies. Transl Neurodegener. 2013;2:7.
Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–23.
Paulus W. Transcranial electrical stimulation (tES - tDCS; tACS; tRNS) methods. Neuropsychological Rehabilitation. 2011;21:602–17.
Polania R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87.
Vallar G, Bolognini N. Behavioural facilitation following brain stimulation: implications for neurorehabilitation. Neuropsychol Rehabil. 2011;21:618–49.
Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–95.
Martins AR, Fregni F, Simis M, Almeida J. Neuromodulation as a cognitive enhancement strategy in healthy older adults: promises and pitfalls. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2017;24:158–85.
Adenzato M, Brambilla M, Manenti R, De Lucia L, Trojano L, Garofalo S, et al. Gender differences in cognitive theory of mind revealed by transcranial direct current stimulation on medial prefrontal cortex. Sci Rep. 2017;7:41219.
Conson M, Errico D, Mazzarella E, Giordano M, Grossi D, Trojano L. Transcranial electrical stimulation over dorsolateral prefrontal cortex modulates processing of social cognitive and affective information. PLoS One. 2015;10:e0126448.
Fumagalli M, Vergari M, Pasqualetti P, Marceglia S, Mameli F, Ferrucci R, et al. Brain switches utilitarian behavior: does gender make the difference? PLoS One. 2010;5:e8865.
Mai X, Zhang W, Hu X, Zhen Z, Xu Z, Zhang J, et al. Using tDCS to explore the role of the right Temporo-parietal junction in theory of mind and cognitive empathy. Front Psychol. 2016;7:380.
Martin AK, Huang J, Hunold A, Meinzer M. Sex mediates the effects of high-definition transcranial direct current stimulation on “mind-Reading”. Neuroscience. 2017;366:84–94.
Santiesteban I, Banissy MJ, Catmur C, Bird G. Enhancing social ability by stimulating right temporoparietal junction. Curr Biol. 2012;22:2274–7.
Martin AK, Dzafic I, Ramdave S, Meinzer M. Causal evidence for task-specific involvement of the dorsomedial prefrontal cortex in human social cognition. Soc Cogn Affect Neurosci. 2017;12:1209–18.
Liao C, Wu S, Luo YJ, Guan Q, Cui F. Transcranial direct current stimulation of the medial prefrontal cortex modulates the propensity to help in costly helping behavior. Neurosci Lett. 2018;674:54–9.
Manenti R, Brambilla M, Benussi A, Rosini S, Cobelli C, Ferrari C, et al. Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov Disord. 2016;31:715–24.
Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett. 2014;582:27–31.
Dinkelbach L, Brambilla M, Manenti R, Brem AK. Non-invasive brain stimulation in Parkinson’s disease: exploiting crossroads of cognition and mood. Neurosci Biobehav Rev. 2017;75:407–18.
Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81:1105–11.
Biundo R, Weis L, Fiorenzato E, Gentile G, Giglio M, Schifano R, et al. Double-blind randomized trial of tDCS versus sham in Parkinson patients with mild cognitive impairment receiving cognitive training. Brain Stimul. 2015;8:1223–5.
Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006;249:31–8.
Mally J, Stone TW, Sinko G, Geisz N, Dinya E. Long term follow-up study of non-invasive brain stimulation (NBS) (rTMS and tDCS) in Parkinson’s disease (PD). Strong age-dependency in the effect of NBS. Brain Res Bull. 2018;142:78–87.
Bara BG, Ciaramidaro A, Walter H, Adenzato M. Intentional minds: a philosophical analysis of intention tested through fMRI experiments involving people with schizophrenia, people with autism, and healthy individuals. Front Hum Neurosci. 2011;5:7.
Ciaramidaro A, Adenzato M, Enrici I, Erk S, Pia L, Bara BG, et al. The intentional network: how the brain reads varieties of intentions. Neuropsychologia. 2007;45:3105–13.
Walter H, Adenzato M, Ciaramidaro A, Enrici I, Pia L, Bara BG. Understanding intentions in social interaction: the role of the anterior paracingulate cortex. J Cogn Neurosci. 2004;16:1854–63.
Walter H, Ciaramidaro A, Adenzato M, Vasic N, Ardito RB, Erk S, et al. Dysfunction of the social brain in schizophrenia is modulated by intention type: an fMRI study. Soc Cogn Affect Neurosci. 2009;4:166–76.
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.
Santangelo G, Barone P, Abbruzzese G, Ferini-Strambi L, Antonini A, Group IS. Validation of the Italian version of Parkinson’s disease-cognitive rating scale (PD-CRS). Neurol Sci. 2014;35:537–44.
Costa A, Bagoj E, Monaco M, Zabberoni S, De Rosa S, Mundi C, et al. Mini mental Parkinson test: standardization and normative data on an Italian sample. Neurol Sci. 2013;34:1797–803.
Skorvanek M, Goldman JG, Jahanshahi M, Marras C, Rektorova I, Schmand B, et al. Global scales for cognitive screening in Parkinson’s disease: critique and recommendations. Mov Disord. 2018;33:208–18.
Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72:208–14.
Pagonabarraga J, Kulisevsky J, Llebaria G, Garcia-Sanchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson's disease. Mov Disord. 2008;23:998–1005.
Sandrini M, Manenti R, Brambilla M, Cobelli C, Cohen LG, Cotelli M. Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning. Neurobiol Aging. 2016;39:210–6.
Fernandez de Bobadilla R, Pagonabarraga J, Martinez-Horta S, Pascual-Sedano B, Campolongo A, Kulisevsky J. Parkinson’s disease-cognitive rating scale: psychometrics for mild cognitive impairment. Mov Disord. 2013;28:1376–83.
Di Virgilio G, Leroy A, Cunin P, Mahieux F, Bachoud-Levi A, Fenelon G. The mini mental Parkinson brief cognitive test: comparison with the Mattis dementia rating scale in 289 patients with Parkinson’s disease. Mov Disord. 2007;22:S90.
Mahieux F, Michelet D, Manifacier MJ, Boller F, Fermanian J, Guillard A. Mini-mental Parkinson: first validation study of a new bedside test constructed for Parkinson’s disease. Behav Neurol. 1995;8:15–22.
Aarsland D, Cummings J, Weintraub D, Chaudhuri KR. Neuropsychiatric and cognitive changes in Parkinson’s disease and related movement disorders: diagnosis and management: Cambridge University Press; 2013.
Kulisevsky J, Fernandez de Bobadilla R, Pagonabarraga J, Martinez-Horta S, Campolongo A, Garcia-Sanchez C, et al. Measuring functional impact of cognitive impairment: validation of the Parkinson’s disease cognitive functional rating scale. Parkinsonism Relat Disord. 2013;19:812–7.
Kulisevsky J, Pagonabarraga J. Cognitive impairment in Parkinson’s disease: tools for diagnosis and assessment. Mov Disord. 2009;24:1103–10.
Bates E, Andonova E, D'Amico S, Jacobsen T, Kohnert K, Lu CC, et al. Introducing the CRL international picture-naming project (CRL-IPNP). University of California San Diego: Center for Research in Language Newsletter La Jolla; 2000. p. 12.
Zimmermann P, Fimm B. A test battery for attentional performance. Applied neuropsychology of attention Theory, diagnosis and rehabilitation; 2002. p. 110–51.
Appollonio I, Leone M, Isella V, Piamarta F, Consoli T, Villa ML, et al. The frontal assessment battery (FAB): normative values in an Italian population sample. Neurol Sci. 2005;26:108–16.
Lezak M, Howieson D, Loring DW. Neuropsychological assessment (fourth edition). Oxford: University Press; 2004.
Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck depression inventories -IA and -II in psychiatric outpatients. J Pers Assess. 1996;67:588–97.
Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson’s disease questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score. Age Ageing. 1997;26:353–7.
Steinberg L, Sharp C, Stanford MS, Tharp AT. New tricks for an old measure: the development of the Barratt impulsiveness scale-brief (BIS-brief). Psychol Assess. 2013;25:216–26.
Santangelo G, Barone P, Cuoco S, Raimo S, Pezzella D, Picillo M, et al. Apathy in untreated, de novo patients with Parkinson’s disease: validation study of apathy evaluation scale. J Neurol. 2014;261:2319–28.
Stiasny-Kolster K, Mayer G, Schafer S, Moller JC, Heinzel-Gutenbrunner M, Oertel WH. The REM sleep behavior disorder screening questionnaire: a new diagnostic instrument. Mov Disord. 2007;22:2386–93.
Antonini A, Abbruzzese G, Ferini-Strambi L, Tilley B, Huang J, Stebbins GT, et al. Validation of the Italian version of the Movement Disorder Society--unified Parkinson’s disease rating scale. Neurol Sci. 2013;34:683–7.
Bressi C, Taylor G, Parker J, Bressi S, Brambilla V, Aguglia E, et al. Cross validation of the factor structure of the 20-item Toronto alexithymia scale: an Italian multicenter study. J Psychosom Res. 1996;41:551–9.
Albiero P, Ingoglia S, Lo CA. Contributo all’adattamento italiano dell’Interpersonal Reactivity Index. Testing Psicometria Metodologia. 2006;13.
Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17:427–42.
Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007;97:3109–17.
Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114:2220–2 author reply 2-3.
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.
Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The “Reading the mind in the eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry. 2001;42:241–51.
Enrici I, Adenzato M, Cappa S, Bara BG, Tettamanti M. Intention processing in communication: a common brain network for language and gestures. J Cogn Neurosci. 2011;23:2415–31.
Tettamanti M, Vaghi MM, Bara BG, Cappa SF, Enrici I, Adenzato M. Effective connectivity gateways to the theory of mind network in processing communicative intention. Neuroimage. 2017;155:169–76.
Herwig U, Satrapi P, Schonfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003;16:95–9.
Faul F, Erdfelder E, Lang AG, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.
del Olmo MF, Bello O, Cudeiro J. Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol. 2007;118:131–9.
Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord. 2006;21:1693–702.
Kaski D, Dominguez RO, Allum JH, Islam AF, Bronstein AM. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson’s disease: a pilot randomized controlled study. Clin Rehabil. 2014;28:1115–24.
Manenti R, Brambilla M, Rosini S, Orizio I, Ferrari C, Borroni B, et al. Time up and go task performance improves after transcranial direct current stimulation in patient affected by Parkinson’s disease. Neurosci Lett. 2014;580:74–7.
Verheyden G, Purdey J, Burnett M, Cole J, Ashburn A. Immediate effect of transcranial direct current stimulation on postural stability and functional mobility in Parkinson’s disease. Mov Disord. 2013;28:2040–1.
Pereira JB, Junque C, Bartres-Faz D, Marti MJ, Sala-Llonch R, Compta Y, et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul. 2013;6:16–24.
Poletti M, Bonuccelli U. Orbital and ventromedial prefrontal cortex functioning in Parkinson’s disease: neuropsychological evidence. Brain Cogn. 2012;79:23–33.
Kawamura M. Social cognitive impairment is an integral part of Parkinson disease. Rinsho Shinkeigaku. 2011;51:1–5.
Monetta L, Grindrod CM, Pell MD. Irony comprehension and theory of mind deficits in patients with Parkinson's disease. Cortex. 2009;45:972–81.
Peron J, Vicente S, Leray E, Drapier S, Drapier D, Cohen R, et al. Are dopaminergic pathways involved in theory of mind? A study in Parkinson’s disease. Neuropsychologia. 2009;47:406–14.
Bora E, Walterfang M, Velakoulis D. Theory of mind in Parkinson’s disease: a meta-analysis. Behav Brain Res. 2015;292:515–20.
Bird CM, Castelli F, Malik O, Frith U, Husain M. The impact of extensive medial frontal lobe damage on ‘Theory of Mind’ and cognition. Brain. 2004;127:914–28.
Di Tella M, Castelli L, Colonna F, Fusaro E, Torta R, Ardito RB, et al. Theory of mind and emotional functioning in fibromyalgia syndrome: an investigation of the relationship between social cognition and executive function. PLoS One. 2015;10:e0116542.
Carlson SM, Moses LJ, Breton C. How specific is the relation between executive function and theory of mind? Contributions of inhibitory control and working memory. Infant Child Dev. 2002;11:73–92.
Champagne-Lavau M, Joanette Y. Pragmatics, theory of mind and executive functions after a right-hemisphere lesion: different patterns of deficits. J Neurolinguistics. 2009;22:413–26.
Dennis M, Agostino A, Roncadin C, Levin H. Theory of mind depends on domain-general executive functions of working memory and cognitive inhibition in children with traumatic brain injury. J Clin Exp Neuropsychol. 2009;31:835–47.
Hughes C, Ensor R. Executive function and theory of mind: predictive relations from ages 2 to 4. Dev Psychol. 2007;43:1447.
Krause L, Enticott PG, Zangen A, Fitzgerald PB. The role of medial prefrontal cortex in theory of mind: a deep rTMS study. Behav Brain Res. 2012;228:87–90.
Lev-Ran S, Shamay-Tsoory SG, Zangen A, Levkovitz Y. Transcranial magnetic stimulation of the ventromedial prefrontal cortex impairs theory of mind learning. Eur Psychiatry. 2012;27:285–9.
Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16:838–44.
Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol. 2010;588:3415–24.
Nitsche MA, Muller-Dahlhaus F, Paulus W, Ziemann U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol. 2012;590:4641–62.
Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.
Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566–78.
Sellaro R, Nitsche MA, Colzato LS. The stimulated social brain: effects of transcranial direct current stimulation on social cognition. Ann N Y Acad Sci. 2016;1369:218–39.